ASSIGNMENT QUESTION PAPER 2020 – 21 M.A. / M.Sc. (FINAL) MATHEMATICS

MEASURE THEORY AND FUNCTIONAL ANALYSIS

ANSWER ALL QUESTIONS. ALL QUESTIONS CARRY EQUAL MARKS.

SECTION - A

 $(4 \times 4 = 16 \text{ Marks})$

- 1. a) State and prove Bounded convergence theorem.
 - b) State and prove Monotone Convergence theorem.
- 2. a) State and prove Reisz Representation theorem.
 - b) State and prove Radon-Nikodym theorem.
- 3. a) Let M be a closed linear subspace of a normed linear space N. if the norm of a coset r+M in the quotient space N/M is defined by

$$||x+M|| = \inf \{||x+m|| : m \in M\}$$

then show that N/M is a normed linear space. Further, show that if N is a Banach space, then so is N/M.

- b) State and prove the open mapping theorem.
- 4. a) State and prove Bessel's inequality.
 - b) Let H be a Hibert space and Let f be an arbitrary functional in H^* . Then show that there exists a unique vector y in H such that f(x) = (x, y) for each x in H.

SECTION - B

 $(4 \times 1 = 4 \text{ Marks})$

- 5. Answer all the following.
 - a) If f and g are bounded measurable functions defined on a set E of finite measure, then show that $\int_{E} (af + bg) = a \int_{E} f + b \int_{E} g$.
 - b) Every measurable subset of a positive set is itself positive. Also show the union of a countable collection of positive sets is positive.
 - c) If *N* is a normed linear space and x_0 is a non-zero vector in *N*, then prove that there exists a functional f_0 in N^* such that $f_0(x_0) = ||x_0||$ and $||f_0|| = 1$.
 - d) If x and y are any two vectors in a Hilbert space, then show that $|(x, y)| \le ||x|| ||y||$.

SCHOOL OF DISTANCE EDUCATION

ASSIGNMENT QUESTION PAPER 2020 – 21

M.A. / M.Sc. (FINAL) MATHEMATICS COMPLEX ANALYSIS

ANSWER ALL QUESTIONS. ALL QUESTIONS CARRY EQUAL MARKS.

SECTION - A

 $(4 \times 4 = 16 \text{ Marks})$

1. a) Let $z = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$ for an integer $n \ge 2$ then show that

$$1+Z+Z^2+....+Z^{n-1}=0$$

Find Z^n .

- b) Show that a MOBIUS transformation takes circles onto circles
- 2. a) State and prove Cauchy's integral formula (first version)

b) Show that
$$\int_{0}^{\pi} \frac{d\theta}{a + \cos \theta} = \frac{\pi}{\sqrt{a^2 - 1}}.$$

- 3. a) State and prove Cauchy's residue theorem
 - b) Sate and prove Arzela Ascolis theorem
- 4. a) State and prove Mittag Leffler's theorem
 - b) State and prove Schwartzs reflection principle

 $(4 \times 1 = 4 \text{ Marks})$

- 5. Answer all of the following
 - a) Define analytic function and Cauchy Riemann equations
 - b) State (i) Livioulle's theorem and (ii) Morera's theorem
 - c) State (i) Montel's theorem and (ii) Runge's theorem

d) Show that
$$\int_{0}^{\infty} \frac{x^{-C} dx}{1+x} = \frac{\pi}{Sin\pi^{C}} \text{ if } 0 < C < 1$$

ASSIGNMENT OUESTION PAPER 2020 – 21

M.A. / M.Sc. (FINAL) MATHEMATICS

NUMBER THEORY

ANSWER ALL QUESTIONS. ALL QUESTIONS CARRY EQUAL MARKS.

SECTION - A

 $(4 \times 4 = 16 \text{ Marks})$

- 1. a) For $n \ge 1$ prove that $\phi(n) = n \prod_{p/n} \left(1 \frac{1}{p}\right)$.
 - b) If both g and f * g are multiplicative, then prove that f is also multiplicative.
- 2. a) State and prove Lagrange theorem.
 - b) State and prove Chinese remainder theorem.
- 3. a) Show that there are infinitely many primes of the form 4n + 1
 - b) Show that for x > 1 and $x \ne x_I$ we have $L(1, x) \sum_{n \le x} \frac{\mu(n)x(n)}{n} = O(1)$
- 4. a) State and prove quadratic reciprocity law.
 - b) State and prove Euler's criterion

SECTION - B

5. Answer all the following.

 $4 \times 1 = 4 \text{ Marks}$

- a) If $n \ge 1$, then prove that $\log n = \sum_{d \le n} {}^{\wedge} (d)$.
- b) State and prove Euler Fermat theorem.
- c) Show that there are infinitely many primes of the form 4n-1.
- d) State and prove Gauss lemma.

SCHOOL OF DISTANCE EDUCATION

ASSIGNMENT QUESTION PAPER 2020 - 21

M.A. / M.Sc. (FINAL) MATHEMATICS

INTEGRAL EQUATIONS

ANSWER ALL QUESTIONS. ALL QUESTIONS CARRY EQUAL MARKS.

SECTION - A (4 x 4 = 16 Marks)

- 1. a) Transform the initial value problem $\frac{d^2y}{dx^2} + y = \cos x$, y(0) = 0, $y^1(0) = 1$ into an integral equation.
 - b) Let $K:[a,b]\times[a,b]\to\Re$ be continuous. Then prove that the only possible continuous solution of $\varphi(x)=\lambda\int_{-\infty}^{x}K(x,y)\varphi(y)dy$ is the trival zero solution.
- 2. a) Prove that if $\varphi(x) = \lambda \int_{a}^{b} k(x, y) dy$ has eigen values, where k is a Hermintioan kernel, then they are all real.
 - b) State and prove Hilbert Schmidt theorem.
- 3. a) Solve the integral equation

$$\int_{0}^{x} \sin \alpha (x-y) \varphi(y) dy = 1 - \cos(\beta x)$$

where α and β are given constants, by applying Laplace transformations.

- b) Solve the integral equation $\varphi(x) = \int_{0}^{x} \frac{1 + \varphi(y)}{1 + y} dy$ by using Picard's method.
- 4. a) Write the Picard iterative method for the existence of solution of the nonlinear Volterra integral equation of the second kind.

$$\varphi(x) = f(x) + \lambda \int_{0}^{x} F(x, y, \varphi(y)) dy$$

b) Find first and second approximations in the iterative solution of the integral equation

$$\int_{0}^{1} (x+y)^{\frac{1}{2}} [\varphi(y)]^{\frac{1}{2}} dy = \varphi(x).$$

and find bounds of $\varphi(x)$.

$$SECTION - B (4 x 1 = 4 Marks)$$

- 5. Answer all the following.
 - a) Describe the shop stocking problem.
 - b) Find the eigen values and eigen functions of the system.

$$\varphi(x) = \lambda \int_{0}^{1} (1 + xt) \varphi(t) dt, \qquad 0 \le x \le 1.$$

c) Solve the integral equation .

$$x^{2} = \int_{0}^{x} \sin(\alpha(x-y))\varphi(y) dy, \quad \alpha \neq 0.$$

d) Find the first three functions in the sequence of functions arising from the iterative solution of the integral equation.

$$\varphi(x) = x + \lambda \int_{0}^{x} [1 + x {\{\varphi(y)\}}]^{2} dy$$

SCHOOL OF DISTANCE EDUCATION

ASSIGNMENT QUESTION PAPER 2020-21

M.A. / M.Sc. (FINAL) MATHEMATICS

LINEAR PROGRAMMING AND GAME THEORY ANSWER ALL QUESTIONS. ALL QUESTIONS CARRY EQUAL MARKS.

SECTION - A

(4 X 4 = 16 Marks)

- 1. Define feasible solution, optimal solution of a standard maximization problem and state and prove optimality criterion for standard maximization problem.
- 2. Solve the following by simplex method

Maximize
$$2\xi_1 + 4\xi_2 + \xi_3 + \xi_4$$

Subject to

$$\xi_1 + 3\xi_2 + \xi_4 \le 4$$

$$2\xi_1 + \xi_2 \le 3$$

$$\xi_2 + 4\xi_3 + \xi_4 \le 3$$

$$\xi_1 \ge 0 \forall i = 1,2,3,4$$

3. Solve the transportation problem whose cost matrices is given as:

	\mathbf{M}_1	M_2	\mathbf{M}_3	M_4	Supply
\mathbf{P}_1	4	4	9	3	3
P_2	3	5	8	8	5
P_3	2	6	5	7	7
Demand	2	5	4	4	

4. Solve the game with pay off matrix

$$\begin{bmatrix} -5 & 5 & 0 & -1 & 8 \\ 8 & -4 & -1 & 6 & -5 \end{bmatrix}$$

SECTION - B

 $4 \times 1 = 4 \text{ Marks}$

- 5. Answer all the following.
 - a) Define (i) Standard maximum problem
 - (ii) Canouical maximum problem
 - b) Write the dual of the problem

Maximize
$$3x_1 + 4x_2 - 2x_3$$

Subject to

$$x_1 - 2x_2 + x_3 = 2$$

$$x_1 + x_2 - 3x_3 \le 4$$

$$3x_1 + x_2 + x_3 \ge 5$$

$$-2x_1-x_2-x_3=-3$$

 $x_1, x_2, x_3 \ge 0$, x_2 is unrestricted and show that dual of dual is primal.

- c) Define the terms
 - (i) Flow
 - (ii) Maximal flow
 - (iii) Cut IV minimal cut
- d) Define
 - (i) Mixed strategy
 - (ii) Pure strategy
 - (iii) Extended game of a game $\Gamma = (S, T, \phi)$

ASSIGNMENT QUESTION PAPER 2020 – 21

M.A. / M.Sc. (FINAL) MATHEMATICS

LATTICE THEORY
ANSWER ALL QUESTIONS. ALL QUESTIONS CARRY EQUAL MARKS.

SECTION - A

 $(4 \times 4 = 16 \text{ Marks})$

- 1. a. Show that every finite partly-ordered set can be represented by a diagram.
 - b. Show that in a Lattice L the prescription $a \le b \Leftrightarrow a \cap b = a$ $(a, b \in L)$ defines an ordering relation.
- 2. a. Show that every element of a compactly generated lattice can be represented as a meet of a completely meet irreduciable elements.
 - b. Show that the dual, every sublattice and every homomorphic image of a modular lattice is modular.
- 3. a. Show that every complete Boolean algebra is infinitely distributive.
 - b. Show that the algebra of relations R(M) of any set M forms a lattice-ordered semigroup with respect to the operations defined in the supplement of the foregoing theorem and to the multiplication of relations.
- 4. Show that every lattice is isomorphic to some sublattice of a complete lattice; moreever, every modular (distributive) lattice is isomorphic to some sublattice of a suitably chosen-modular (distributive) complete lattice.

SECTION B

 $4 \times 1 = 4 \text{ Marks}$

- 5. Answer all the following.:
 - a. Write about Galois connection corresponding to the relation ϕ .
 - b. write the statements of
 - i. Isomorphism theorem of modular lattices
 - ii. Kurosh-Ore theorem
 - c. Write about Boolean algebras and Boolean rings.
 - d. Write about congruence relation of lattices.

ASSIGNMENT QUESTION PAPER 2020 - 21

M.A. / M.Sc. (FINAL) MATHEMATICS

COMMUTATIVE ALGEBRA

ANSWER ALL QUESTIONS. ALL QUESTIONS CARRY EQUAL MARKS.

SECTION - A

 $(4 \times 4 = 16 \text{ Marks})$

- 1. a) i) If $L \supseteq M \supseteq N$ are A-modules, then prove that (L/N) $(M/N) \cong L/M$.
 - ii) If (M_1, M_2) are submodules of an A module M, then prove that $(M_1 + M_2)/M_1 \cong M_2/(M_1 \cap M_2)$
 - b) State and prove Nakayama's lemma.
- 2. For an A-module N, prove that the following are equivalent:
 - a) N is flat
 - b) If $0 \to M' \to M \to M'' \to 0$ is any exact sequence of A module, then the tensored sequence $0 \to M' \otimes N \to M \otimes N \to M'' \to 0$ is extract.
 - c) If $f: M' \to M$ is injective, then $f \otimes I \to M \otimes N \to M \otimes N$ is injective.
 - d) If $f: M \to M$ is injective and M, M' are finitely generated, then $f \otimes I: M \otimes N \to M \otimes N$ is injective.
- 3. a) State and prove second uniqueness theorem.
 - b) If r(I) is maximal, then prove that I is primary, In particular, the powers of a maximal ideal M more *M*-primary.
- 4. a) Prove that the length l(M) is an additive function on the class of all A-modules of finite length.
 - b) Prove that in a Noetherian ring every irreducible ideal is primary.

SECTION - B

5. Answer all the following

 $4 \times 1 = 4 Marks$

- a) Let M be a finitely generated A module N a submodule of M, $I \subseteq A$ an ideal. Then prove that $M = IM + N \Rightarrow M = N$.
- b) Show that S^{-1} A is a flat A-module.
- c) If I = r(I), then prove that I has no embedded prime ideals.
- d) Prove that in a Neotherian ring A, every ideal a contains a power of its radical.

SCHOOL OF DISTANCE EDUCATION

ASSIGNMENT QUESTION PAPER 2020 – 21

M.A. / M.Sc. (FINAL) MATHEMATICS

NUMERICAL ANALYSIS AND COMPUTER TEQCHNIQUES

ANSWER ALL QUESTIONS. ALL QUESTIONS CARRY EQUAL MARKS.

SECTION - A

 $(4 \times 4 = 16 \text{ Marks})$

1. Write assignment statements to computer the mass M of an electron using the following formula:

$$V_c = MC^2 - M_0C^2$$

Where

V = Voltage in the electron gun

e = Charge of an electron = $1.60 + 10^{-18}$ Coulomb

 $m_0 = \text{rest mass of an electron} = 9.11 + 10^{-31} \text{ kg}$

C =Speed of light 3.00×10^8 m/s

- 2. Evaluate the integral $I = \int_{-1}^{1} (1 x^2)^{3/2} \cos x \, dx$ using Gauss-Legendre three point formula.
- 3. Solve the initial value problem $U^1 = -2tU^2$, U(0) = 1 with h = 0.2 on the interval [0,1]. Use the fourth order Classical Runge Kutta method.
- 4. Write a FORTRAN program to evaluate the integral $\int_{1}^{2} \sin 2x \, dx$ using Simpson's rule with 4 sub intervals.

SECTION - B

5. Answer all the following

 $4 \times 1 = 4 Marks$

- a) Write about the variable with examples.
- b) Determine a,b and c such that the formula

 $\int_{0}^{h} f(x)dx = h\left\{af(0) + bf\left(\frac{h}{3}\right) + cf(h)\right\}$ is exact for polynomials of as high order as possible and determine the order of the truncation error.

- c) Given the initial value problem $u^1 = t^2 + u^2$, u(0) = 0 determine the first three non-zero terms in the Taylor series for u(t)
- d) Explain shooting method

ASSIGNMENT QUESTION PAPER 2020 – 21

M.A. / M.Sc. (FINAL) MATHEMATICS

UNIVERSAL ALGEBRA

ANSWER ALL QUESTIONS. ALL QUESTIONS CARRY EQUAL MARKS.

SECTION - A

 $(4 \times 4 = 16 \text{ Marks})$

- 1. a. Let P be a poset such that $\land A$ exists for every subset A of P or such that $\lor A$ exists for every subset of P A. Then prove that P is a complete lattice.
 - b. Prove that every algebraic lattice is isomorphic to the lattice of closed subsets of some set *A* with algebraic closure operator *C*.
- 2. a. If *A* is congruence permutable, show that *A* is congruence modular.
 - b. State and prove third isomorphism theorem.
- 3. a. With usual notation, prove that V = HSP.
 - b. Suppose $U_1(X_1)$ and $U_2(X_2)$ are two algebras in a class k with the universal mapping property for k over the indicated sets. If $|X_1| = |X_2|$ then prove that $U_1(X_1) = U_2X_2$.
- 4. a. Show that if L is a sub directly irreducible distributive lattice then $|L| \le 2$.
 - b. State and prove Stone Duality theorem.

SECTION - B

5. Answer all the following.:

 $4 \times 1 = 4 \text{ Marks}$

- a. Define a modular lattice. Show that every distributive is a modular lattice.
- b. State and prove second isomorphism theorem.
- c. Define a sub direct product, a sub direct embedding and subdirectly irreducible.
- d. Show that in a distributive lattice relative complements are unique if they exist.