Information Technology

Scheme and Syllabus (With effect from 2020-21 admitted batch)

B.Tech I Year - I Semester

Course code	Category	Course Title	Hours per week			Internal	External	Total	Credits C
			L	T	P	Marks	Marks	Marks	C
IT-1101	BS	Mathematics – I	3	0	0	30	70	100	3
IT-1102	BS	Chemistry	3	0	0	30	70	100	3
IT-1103	HSS	English	3	0	0	30	70	100	3
IT-1104	ES	CPNM	3	0	3	30	70	100	3
IT-1105	ES	Discrete Mathematical Structures	3	0	0	30	70	100	3
IT-1106	HSS	English Language Lab	0	0	2	50	50	100	1.5
IT-1107	BS	Chemistry Lab	0	0	3	50	50	100	1.5
IT-1108	ES	CPNM Lab	0	0	3	50	50	100	1.5
Total Credits									19.5

B.Tech I Year - II Semester

Course	Catagory	cory Course Title		rs per	week	Internal	External	Total	Credits
code	Category	Course Title	L	T	P	Marks	Marks	Marks	C
IT-1201	BS	Mathematics – II	3	0	0	30	70	100	3
IT-1202	BS	Physics	3	0	0	30	70	100	3
IT-1203	ES	Engineering Graphics	1	0	4	30	70	100	3
IT-1204	ES	Data Structures	3	0	0	30	70	100	3
IT-1205	ES	Digital Logic Design	3	0	0	30	70	100	3
IT-1206	ES	Workshop Lab	0	0	3	50	50	100	1.5
IT-1207	BS	Physics Lab	0	0	3	50	50	100	1.5
IT-1208	ES	Data Structures Lab	0	0	3	50	50	100	1.5
Total Credits									19.5

IT-1101 MATHEMATICS-I

CourseObjectives:

- To transmit the knowledge of Partial differentiation.
- To know of getting maxima and minima of function of two variables and finding errors and approximations.
- To evaluate double and triple integrals, volumes of solids and area of curved surfaces.
- To expand a periodical function as Fourier series and half-range Fourier series.

CourseOutcomes:

- Find the partial derivatives of functions of two or more variables.
- Evaluate maxima and minima, errors and approximations.
- Evaluate double and triple integrals, volumes of solids and area of curved surfaces.
- To expand a periodical function as Fourier series and half-range Fourier series.
- Have a fundamental understanding of Fourier series and be able to give Fourier expansions of a given function.

SYLLABUS

(Partial Differentiation)

Introduction - Functions of two or more variables - Partial derivatives - Homogeneous functions - Euler's theorem - Total derivative - Change of variables - Jacobins. Mean value Theorems (without proofs)

(Applications of Partial Differentiation)

Geometrical interpretation -Tangent plane and Normal to a surface -Taylor's theorem for functions of two variables - Errors and approximations -Total differential. Maxima and Minima of functions of two variables - Lagrange's method of undetermined multipliers - Differentiation under the integral Sign - Leibnitz's rule.

(Multiple Integrals)

Introduction - Double Integrals - Change of Order of Integration - Double Integrals in Polar Coordinates - Triple Integrals - Change of Variables.

(Multiple Integrals-Applications)

Area enclosed by plane curves - Volumes of solids - Area of a curved surface - Calculation of Mass - Center of gravity - Moment of inertia - product of inertia - principal axes- Beta Function - Gamma Function - Relation between Beta and Gamma Functions. Error Function or Probability Integral.

(Fourier Series)

Introduction - Euler's Formulae - Conditions for a Fourier Expansion - Functions having points of discontinuity - Change of Interval - Odd and Even Functions - Expansions of Odd or Even Periodic Functions, Half-Range Series - Parseval's Formula. Practical Harmonic analysis.

TEXT BOOK:

Scope and Treatment as in "Higher Engineering Mathematics", by Dr. B.S. Grewal, 43rd Edition, Khanna publishers.

REFERENCE BOOKS:

- 1. Graduate Engineering Mathematics by V B Kumar Vatti., I.K.International publishing house Pvt. Ltd.
- 2. Advanced Engineering Mathematics by Erwin Kreyszig.
- 3. A text book of Engineering Mathematics, by N.P. Bali and Dr. Manish Goyal, Lakshmi Publications.

- 4. Advanced Engineering Mathematics by H.K. Dass. S. Chand Company.
- 5. Higher Engineering Mathematics by B.V. Ramana, Tata Mc Graw Hill Company.
- 6. Higher Engineering Mathematics by Dr. M.K. Venkataraman.

IT-1102 CHEMISTRY

Course Objectives:

- To apply the basic knowledge of Chemistry to the Engineering Discipline.
- To develop knowledge about water and its treatment for industrial and potable purposes.
- To develop understanding in the areas of Polymers, Mechanism of Corrosion of Metals and Corrosion Control Methods, Fuels, Lubricants and Nanomaterials for of conducting polymers, bio-degradable polymers and fiber reinforced plastics and apply the knowledge for solving existing challenges faced in various engineering and societal areas.

Course outcome:

- This course applies the basic concepts and principles studied in Chemistry to Engineering.
- It provides an application of chemistry to different branches of engineering
- The students will be able acquire knowledge in the areas of Water Chemistry, Polymers, Corrosion, Fuels and Lubricants and nanomaterials and suggest innovative solutions for existing challenges in these areas.

SYLLABUS

Water Chemistry

Sources of Water – Impurities and their influence of living systems – WHO Limits – Hardness and its Determination – Boiler Troubles and their removal – Water Softening Methods – Lime-Soda, Zeolite and Ion Exchange - Municipal Water Treatment-Break Point Chlorination – Desalination of Sea Water – Reverse Osmosis Method, Electro-dialysis.

Polymers and Plastics

Polymers: Definition – Types of Polymerization (Addition & Condensation) – Mechanisms of Addition Polymerization – Radical and Ionic – Thermodynamics of Polymerization Process. **Plastics:** Thermosetting and Thermoplastics – Effect of Polymer Structure on Properties of Cellulose Derivatives – Vinyl Resins – Nylon (6,6), Reinforced Plastics – Conducting Polymers.

Corrosion

Corrosion: Origin and Theory – Types of Corrosion: Chemical and Electrochemical; Pitting, Inter granular, Waterline, Stress – Galvanic Series – Factors Effecting Corrosion.

Corrosion Controlling Methods: Protective Coatings: Metallic Coatings, Electroplating and Electroless Plating – Chemical conversion Coatings – Phosphate, Chromate, Anodized, Organic Coatings – Paints and Special Paints.

Fuels and Lubricants

Solid Fuels: Wood and Coal, Ranking of Coal – Analysis (Proximate and Ultimate) Coke Manufacture – Otto Hoffmann's Process – Applications; **Liquid Fuels:** Petroleum Refining – Motor Fuels – Petrol and Diesel Oil – Knocking – Octane number – Cetane Number; **Gaseous Fuels:** Biogas, LPG and CNG – Characteristics – Applications; **Rocket Fuels:** Propellants – Classification – Characteristics

Lubricants: Classification – Mechanism – Properties of Lubricating Oils – Selection of Lubricants for Engineering Applications.

Nanomaterials

Nanomaterials, Properties and application of fullerenes, fullerols, Carbon nanotubes and nanowires. Synthesis - Top-down and Bottom-up approaches - Nanocomposites - Nanoelectronics- Applications of nanomaterials in catalysis, telecommunication and medicine.

Text Books:

- 1. Engineering Chemistry PC Jain and M. Jain DhanpathRai and Sons, New Delhi.
- 2. A Text book of Engineering Chemistry S. S. Dara S. Chand & Co. New Delhi.

Reference Books:

- 1. Engineering Chemistry B. K. Sharma Krishna Prakashan Meerut.
- 2. Introduction to Nanoscience S. M. Lindsay Oxford University Press
- 3. Engineering Chemistry B. L. Tembe, Kamaluddin and M. S. Krishnan, (NPTEL).

IT-1103 ENGLISH

Course Objectives:

- To make students understand the explicit and implicit meanings of a text/topic;
- To give exposure to new words and phrases, and aid to use them in different contexts;
- To apply relevant writing formats to draft essays, letters, emails and presentations; and
- To adapt oneself to a given situation and develop a functional approach to finding solutions: adaptability and problem solving.

Course Outcomes:

- Students will be able to analyse a given text and discover the various aspects related to language and literature:
- Learn the various language structures, parts of speech and figures of speech;
- Develop one's reading and writing abilities for enhanced communication; and
- Learn to apply the topics in real-life situations for creative and critical use.

SYLLABUS

On the conduct of life: William Hazlitt

Life skills: Values and Ethics

If: Rudyard Kipling

The Brook: Alfred Tennyson Life skills: Self-Improvement

How I Became a Public Speaker: George Bernard Shaw

The Death Trap: Saki

Life skills: Time Management

On saving Time: Seneca

ChinduYellama

Life skills: Innovation
Muhammad Yunus

Politics and the English Language: George Orwell

Life skills: Motivation

Dancer with a White Parasol: Ranjana Dave

Grammar:

Prepositions – Articles – Noun-Pronoun Agreement, Subject-Verb Agreement – Misplaced Modifiers – Clichés, Redundancies.

Vocabulary:

Introduction to Word Formation – Root Words from other Languages – Prefixes and Suffixes – Synonyms, Antonyms – Common Abbreviations

Writing:

 $Clauses\ and\ Sentences-Punctuation-Principals\ of\ Good\ Writing-Essay\ Writing-Writing\ a$

Summary

Writing: Essay Writing Life skills: Innovation Muhammad Yunus

Textbook: Language and Life: A Skills Approach Board of Editors, Orient Blackswan Publishers, India. 2018.

References:

- 1. Practical English Usage, Michael Swan. OUP. 1995.
- 2. Remedial English Grammar, F.T. Wood. Macmillan. 2007
- 3. On Writing Well, William Zinsser. Harper Resource Book. 2001
- 4. Study Writing, Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.
- 5. Communication Skills, Sanjay Kumar and PushpLata. Oxford University Press. 2011.
- 6. Exercises in Spoken English, Parts. I-III. CIEFL, Hyderabad. Oxford University Press.

IT-1104 CPNM

Course Objectives:

- The course is designed to provide complete knowledge of C language.
- To provide students with understanding of code organization and functional hierarchical decomposition with using complex data types.
- To provide knowledge to the Students to develop logics which will help them to create programs, applications in C.
- This course aims to identify tasks in which the numerical techniques learned are applicable and apply them to write programs, and hence use computers effectively to solve the task.
- This course provides the fundamental knowledge which is useful in understanding the other programming languages.

Course Outcomes:

- **Identify** basic elements of C programming structures like data types, expressions, control statements, various simple functions and **Apply** them in problem solving.
- Apply various operations on derived data types like arrays and strings in problem solving.
- **Design** and Implement of modular Programming and memory management using Functions, pointers.
- **Apply** Structure, Unions and File handling techniques to **Design** and **Solve** different engineering programs with minimal complexity.
- **Apply** Numerical methods to **Solve** the complex Engineering problems.

SYLLABUS

- **1. Introduction to C:** Basic structure of C program, Constants, Variables and data types, Operators and Expressions, Arithmetic Precedence and associativity, Type Conversions. Managing Input and Output Operations Formatted Input, Formatted Output.
- **2. Decision Making, Branching, Looping, Arrays & Strings:** Decision making with if statement, Simple if statement, The if...else statement, Nesting of if...else statement, the else..if ladder, switch statement, the (?:) operator, the GOTO statement., The while statement, the do statement, The for statement, Jumps in Loops, One, Two-dimensional Arrays, Character Arrays. Declaration and initialization of Strings, reading and writing of strings, String handling functions, Table of strings.
- **3. Functions:** Definition of Functions, Return Values and their Types, Function Calls, Function Declaration, Category of Functions: No Arguments and no Return Values, Arguments but no Return Values, Arguments with Return Values, No Argument but Returns a Value, Functions that Return Multiple Values. Nesting of functions, recursion, passing arrays to functions, passing strings to functions, the scope, visibility and lifetime of variables.
- **4. Pointers:** Accessing the address of a variable, declaring pointer variables, initializing of pointer variables, accessing variables using pointers, chain of pointers, pointer expressions, pointers and arrays, pointers and character strings, array of pointes, pointers as function arguments, functions returning pointers, pointers to functions, pointers to structures-Program Applications
- **5. Structure and Unions:** Defining a structure, declaring structure variables, accessing structure members, structure initialization, copying and comparing structure variables, arrays of structures, arrays within structures, structures within structures and functions and unions, size of structures and bit-fields- Program applications.

- **6. File handling:** Defining and opening a file, closing a file, Input/ Output operations on files, Error handling during I/O operations, random access to files and Command Line Arguments- Program Applications
- **7. Numerical Methods:** Solutions of Algebraic and Transcendental Equations, Bisection Method, Newton Raphson Method. Newton's forward and backward Interpolation, Lagrange's Interpolation in unequal intervals. Numerical Integration: Trapezoidal rule, Simpson's 1/3 rules. Solutions of Ordinary First Order Differential Equations: Euler's Method, Modified Euler's Method and Runge-Kutta Method.

Text Book:

- 1. Programming in ANSI C, E Balagurusamy, 6th Edition. McGraw Hill Education (India) Private Limited.
- 2. Introduction to Numerical Methods, SS Sastry, Prentice Hall

Reference Books:

- 1. Let Us C, YashwantKanetkar, BPB Publications, 5th Edition.
- 2. Computer Science, A structured programming approach using C", B.A.Forouzan and R.F.Gilberg, " 3rd Edition, Thomson, 2007.
- 3. The C Programming Language' B.W. Kernighan, Dennis M. Ritchie, PHI.
- 4. Scientific Programming: C-Language, Algorithms and Models in Science, Luciano M. Barone (Author), EnzoMarinari (Author), Giovanni Organtini, World Scientific.

IT1105 DISCRETE MATHEMATICAL STRUCTURES

Course Objectives:

- To understand mathematical arguments using logical connectives and quantifiers and verify the validity of logical flow of arguments using propositional ,predicate logic and truth tables.
- To understand about permutations and combinations.
- To understand various types of relations and discuss various properties of the relations.
- To study the graphs, graph isomorphism and spanning trees.
- To study about Boolean algebra and Finite State Machines.

Course Outcomes:

At the end of the course student will be able to

- Rewrite mathematical arguments using logical connectives and quantifiers and verify the validity of logical flow of arguments using propositional, predicate logic.
- Identify and give examples of various types of relations and describe various properties of the relations.
- Ability to solve problems using permutations and combinations.
- Determine isomorphism of graphs and spanning tree of a given graph using BFS/DFS algorithms. Also determine minimal spanning tree of a given graph.

Syllabus

- 1. **The Foundations-Logic and Proofs:** Propositional Logic, Propositional Equivalences, Predicates and Quantifiers, Nested Quantifiers Rules of Inference, Introduction to Proofs, Proof Methods and Strategy, Basic Structures-Sets, Functions, Sequences and Sums: Sets, Set Operations, Functions, Sequences and Summations.
- 2. **The Fundamentals-Algorithms, the Integers and Matrices:** Algorithms, The Growth of Functions, Complexity of Algorithms, The Integers and Division, Primes and Greatest Common Devisors, Integers and Algorithms, Applications of Number Theory, Matrices.
- 3. Induction and Recursion: Mathematical Induction, Strong Induction and Well-Ordering, Recursive Definitions and Structural Induction, Recursive Algorithms, Program Correctness. Counting: The Basics of Counting, The Pigeonhole Principle, Permutations and Combinations, Binomial Coefficients, Generalized Permutations and Combinations, Generating Permutations and Combinations.
- 4. **Advanced Counting Techniques:** Recurrence Relations, Solving Linear Recurrence Relations, Divide-and-Conquer Algorithms and Recursion Relations, Generating Functions, Inclusion-Exclusion, and Applications of Inclusion-Exclusion.
- 5. **Relations:** Relations and their properties, n-ary relations, applications, Representation, closure, equivalence relations, Partial orderings.
 - **Graphs**: Graphs and Graph Models, Graph Terminology and Special Types of Graphs, Representing Graphs and Graph Isomorphism, Connectivity, Euler and Hamilton Paths, Shortest-Path Problems, Planar Graphs, Graph Coloring

- 6. **Trees:** Introduction to Trees, Applications of Trees, Tree Traversal, Spanning Trees, Minimum Spanning Trees,
- 7. **Boolean Algebra:** Boolean Functions, Representing Boolean Functions, Logic Gates, Minimization of Circuits

Modeling Computation: Languages and Grammars, Finite-State Machines with Output, Finite-State Machines with No Output, Language Recognition, Turing Machines

Text Book:

1. Discrete Mathematics & Its Applications with Combinatorics and Graph Theory by Kenneth H Rosen, Tata McGraw-Hill Publishing Company Ltd., New Delhi.

Reference Books:

- 1. Discrete Mathematics for Computer Scientists & Mathematicians by Joe L. Mott, Abraham Kandel, Theodore P. Baker, Prentice-Hall, India.
- 2. Discrete Mathematics by Richard Johnson Baug, Pearson Education, New Delhi.
- 3. Discrete and Combinatorial Mathematics by Ralph. G. Grimaldi, Pearson Education, New Delhi.

IT-1106 ENGLISH LANGUAGE LAB

Course Objectives:

- To make students recognize the sounds of English through Audio-Visual aids;
- To help students build their confidence and help them to overcome their inhibitions and self-consciousness while speaking in English;
- To familiarize the students with stress and intonation and enable them to speak English effectively; and
- To give learners exposure to and practice in speaking in both formal and informal contexts.

Course Outcomes:

- Students will be sensitized towards recognition of English sound patterns and the fluency in their speech will be enhanced;
- A study of the communicative items in the laboratory will help students become successful in the competitive world;
- Students will be able to participate in group activities like roleplays, group discussions and debates; and
- Students will be able to express themselves fluently and accurately in social as well professional context.

SYLLABUS

Introduction to Phonetics: The Sounds of English (Speech sound – vowels and consonants) - Stress and Intonation - Accent and Rhythm.

Listening Skills: Listening for gist and specific information - listening for Note taking, summarizing and for opinions - Listening to the speeches of eminent personalities.

Speaking Skills: Self-introduction - Conversation Skills (Introducing and taking leave) - Giving and asking for information - Role Play - Just A Minute (JAM) session - Telephone etiquette.

Reading and Writing skills: Reading Comprehension – Précis Writing - E-Mail writing - Punctuation.

Presentation skills: Verbal and non-verbal communication - Body Language - Making a Presentation.

Reference Books:

- 1. Ashraf Rizvi. *Effective Technical Communication*. Tata McGraw Hill Education Private Limited, New Delhi.
- 2. Speak Well. Orient Blackswan Publishers, Hyderabad.
- 3. Allan Pease. Body Language. Manjul Publishing House, New Delhi.

IT-1107 CHEMISTRY LAB

Course Objectives:

- To develop the fine skills of quantitative determination of various chemical components through titrimetric analysis
- To prepare and use ionexchange/ zeolite columns for the removal of hardness of water
- To develop the skill of organic synthesis through the preparation of a polymer/ drug

Course Outcomes:

- The course provides quantitative determine the amount of various chemical species in solutions by titrations and conduct the quantitative determinations with accuracy
- The course provides to develop novel materials to be used as zeolite and prepare columns for removal of hardness of water
- The course provides to synthesise a polymer or a drug

SYLLABUS

- 1. Determination of Sodium Hydroxide with HCl (Na₂CO₃ Primary Standard)
- 2. Determination of Alkalinity (Carbonate and Hydroxide) of water sample
- 3. Determination of Fe(II)/Mohr's Salt by Permanganometry
- 4. Determination of Oxalic Acid by Permanganometry
- 5. Determination of Chromium (VI) by Mohr's Salt Solution
- 6. Determination of Zinc by EDTA method
- 7. Determination of Hardness of Water sample by EDTA method
- 8. Determination of Chlorine in water by Iodometric Titration
- 9. Ionexchange/ Zeolite column for removal of hardness of water
- 10. Synthesis of Polymer/drug

Reference Books:

- 1. Vogel's Quantitative Chemical Analysis V Edition Longman.
- 2. Experiments in Applied Chemistry (For Engineering Students) Sinita Rattan S. K. Kataria & Sons, New Delhi

IT-1108 CPNM LAB

Course Objectives:

- To impart writing skill of C programming to the students and solving problems.
- To write and execute programs in C to solve problems such as Modularize the problems into small modules and then convert them into programs.,
- To write and execute programs in C to solve problems such as arrays, files, strings, structures and different numerical methods.
- This reference has been prepared for the beginners to help them understand the basic to advanced concepts related to Objective-C Programming languages.

Course Outcomes:

- Understand various computer components, Installation of software. C programming development environment, compiling, debugging, and linking and executing a program using the development environment.
- Analyzing the complexity of problems, Modularize the problems into small modules and then convert them into programs.
- Construct programs that demonstrate effective use of C features including arrays, strings, structures, pointers and files.
- Apply and practice logical ability to solve the real world problems.
- Apply Numerical methods to Solve the complex Engineering problems.

SYLLABUS

- 1. Write a program to read x, y coordinates of 3 points and then calculate the area of a triangle formed by them and print the coordinates of the three points and the area of the triangle. What will be the output from your program if the three given points are in a straight line?
- 2. Write a program, which generates 100 random integers in the range of 1 to 100. Store them in an array and then print the arrays. Write 3 versions of the program using different loop constructs. (e.g. for, while, and do while).
- 3. Write a set of string manipulation functions e.g. for getting a sub-string from a given position, Copying one string to another, Reversing a string, adding one string to another.
- 4. Write a program which determines the largest and the smallest number that can be stored in different data types like short, int, long, float, and double. What happens when you add 1 to the largest possible integer number that can be stored?
- 5. Write a program, which generates 100 random real numbers in the range of 10.0 to 20.0, and sort them in descending order.
- 6. Write a function for transposing a square matrix in place (in place means that you are not allowed to have full temporary matrix).
- 7. First use an editor to create a file with some integer numbers. Now write a program, which reads these numbers and determines their mean and standard deviation.
- 8. Given two points on the surface of the sphere, write a program to determine the smallest arc length between them.
- 9. Implement bisection method to find the square root of a given number to a given accuracy.
- 10. Implement Newton Raphson method to det. a root of polynomial equation.
- 11. Given table of x and corresponding f(x) values, Write a program which will determine f(x) value at an intermediate x value by using Lagrange's interpolation/
- 12. Write a function which will invert a matrix.

- 13. Implement Simpson's rule for numerical integration.14. Write a program to solve a set of linear algebraic equations.

IT-1201 MATHEMATICS – II

Course Objectives:

- The way of obtaining rank, eigen values and eigen vectors of a matrix.
- To know the importance of Cayley-Hamilton theorem and getting canonical form from a given quadratic form.
- To solve the system of equations by using direct and indirect methods.
- To solve first order and higher order differential equations by various methods.
- To obtain the Laplace transforms and inverse Laplace transforms for a given functions and their applications.

Course Outcomes:

- Find rank, eigen values and eigen vectors of a matrix and understand the importance of Cayley-Hamilton theorem.
- Reduce quadratic form to canonical forms and solving linear systems by direct and indirect methods.
- Demonstrate solutions to first order differential equations by various methods and solve basic applications problems related to electrical circuits, orthogonal trajectories and Newton's law of cooling
- Discriminate among the structure and procedure of solving higher order differential equations with constant and variable coefficients.
- Understand Laplace transforms and its properties and finding the solution of ordinary differential equations.

SYLLABUS

(Linear Algebra)

Rank of a matrix- Echelon form, Normal Form - Solution of Linear System of Equations - Consistency of Linear System of Equations - Direct & Indirect Methods: Gauss elimination method, LU Factorization method, Gauss Seidal Method. Complex Matrices: Hermitian, Skew-Hermitian and Unitary Matrices and their Properties.

(Eigen Values and Eigen Vectors)

Eigen Values and Eigen Vectors of a Matrix - Cayley-Hamilton theorem - Inverse and Powers of a Matrix using Cayley-Hamilton's theorem and its applications. Diagonalization of a Matrix - Quadratic Forms - Reduction of Quadratic Form to Canonical Form - Nature of a Quadratic Form.

(Ordinary Differential Equations of First Order and its Applications)

Formation of ordinary differential equations (ODEs) - Solution of an ordinary differential equation - Equations of the first order and first degree - Linear differential equation - Bernoulli's equation - Exact differential equations - Equations reducible to exact equations - Orthogonal Trajectories - Simple Electric (LR & CR) Circuits - Newton's Law of Cooling - Law of Natural growth and decay.

(Differential Equations of Higher Order)

Solutions of Linear Ordinary Differential Equations with Constant Coefficients - Rules for finding the complimentary function - Rules for finding the particular integral - Method of variation of parameters - Cauchy's linear equation - Legendre's linear equation - Simultaneous linear differential equations.

(Laplace Transforms)

Introduction - Existence Conditions - Transforms of Elementary Functions - Properties of Laplace Transforms - Transforms of Derivatives - Transforms of Integrals - Multiplication by t^n - Division by t - Evaluation of integrals by Laplace Transforms - Inverse Laplace Transform - Applications of Laplace Transforms to Ordinary Differential Equations - Simultaneous Linear Differential Equations with Constant Coefficients - Second Shifting Theorem - Laplace Transforms of Unit Step Function, Unit Impulse Function and Laplace Transforms of Periodic Functions.

TEXT BOOK:

Scope and Treatment as in "Higher Engineering Mathematics", by Dr. B.S. Grewal, $43r^d$ edition, Khanna publishers.

REFERENCE BOOKS:

- 7. Graduate Engineering Mathematics by V B Kumar Vatti., I.K. International publishing house Pvt. Ltd.
- 1. Advanced Engineering Mathematics by Erwin Kreyszig.
- 2. A text book of Engineering Mathematics, by N.P. Bali and Dr. Manish Goyal. Lakshmi Publications.
- 3. Advanced Engineering Mathematics by H.K. Dass. S. Chand Company.
- 4. Higher Engineering Mathematics by B.V. Ramana, Tata Mc Graw Hill Company.

IT-1202 PHYSICS

Course Objectives:

- To impart knowledge in basic concept of physics of Thermodynamics relevant to engineering applications.
- To grasp the concepts of physics for electromagnetism and its application to engineering. Learn production of Ultrasonics and their applications in engineering.
- To Develop understanding of interference, diffraction and polarization: connect it to a few engineering applications.
- To Learn basics of lasers and optical fibers and their use in some applications.
- To Understand concepts and principles in quantum mechanics and Nanopahse Materials. Relate them to some applications.

Course Outcomes:

- Understand the fundamentals of Thermodynamics and Laws of thermodynamics. Understand the working of Carnot cycle and concept of entropy.
- Gain Knowledge on the basic concepts of electric and magnetic fields. Understand the concept of the nature of magnetic materials. Gain knowledge on electromagnetic induction and its applications .
- Understand the Theory of Superposition of waves. Understand the formation of Newton's rings and the working of Michelson's interferometer. Remember the basics of diffraction, Evaluate the path difference. Analysis of Fraunhofer Diffraction due to a single slit
- Understand the interaction of matter with radiation, Characteristics of Lasers, Principle, working schemes of Laser and Principle of Optical Fiber. Realize their role in optical fiber communication.
- Understand the intuitive ideas of the Quantum physics and understand dual nature of matter. Compute Eigen values, Eigen functions, momentum of Atomic and subatomic particles using Time independent one Dimensional Schrodinger's wave equation. Understand the fundamentals and synthesis processes of Nanophase materials.

SYLLABUS

THERMODYNAMICS

Introduction, Heat and Work, First law of thermodynamics and applications, Reversible and Irreversible process, Carnot cycle and Efficiency, Second law of thermodynamics, Carnot's Theorem, Entropy, Second law in terms of entropy, Entropy and disorder, Third law of thermodynamics (statement only).

ELECTROMAGNETISM

Concept of electric flux, Gauss's law - some applications, Magnetic field - Magnetic force on current, torque on current loop, The Biot-Savart's Law, B near a long wire, B for a circular Current loop, Ampere's law, B for a solenoid, Hall effect, Faraday's law of induction, Lenz's law, Induced magnetic fields, Displacement current, Maxwell's equations (no derivation), Magnetic materials: Classification of magnetic materials and properties.

Ultrasonics : Introduction, Production of Ultrasonics – Piezoelectric and Magnetostriction methods, acoustic grating, applications of ultrasonics.

.

OPTICS

Interference: Principles of superposition – Young's Experiment – Coherence - Interference in thin films (reflected light), Newton's Rings, Michelson Interferometer and its applications.

Diffraction: Introduction, Differences between interference and diffraction, Fresnel and Fraunhofer diffraction, Fraunhofer diffraction at a single slit (Qualitative and quantitative treatment).

Polarisation: Polarisation by reflection, refraction and double refraction in uniaxial crystals, Nicol prism, Quarter and Half wave plate, circular and elliptical polarization.

LASERS and FIBRE OPTICS

Introduction, characteristics of a laser beam, spontaneous and stimulated emission of radiation, population inversion, Ruby laser, He-Ne laser, Semiconductor laser, applications of lasers

Introduction to optical fibers, principle of propagation of light in optical fibers, Acceptance Angle and cone of a fibre, Numerical aperture, Modes of propagations, classification of fibers, Fibre optics in communications, Application of optical fibers.

MODERN PHYSICS

Introduction, De Broglie concept of matter waves, Heisenberg uncertainty principle, Schrodinger time independent wave equation, application to a particle in a box. Free electron theory of metals, Kronig - Penney model (qualitative treatment), Origin of energy band formation in solids, Classification of materials into conductors, semi conductors and insulators.

Nanophase Materials

Introduction, properties, Top-down and bottom up approaches, Synthesis - Ball milling, Chemical vapour deposition method, sol-gel methods, Applications of nano materials.

TEXT BOOKS:

- 1. Physics by David Halliday and Robert Resnick Part I and Part II Wiley.
- 2. A textbook of Engineering Physics, Dr. M. N. Avadhanulu, Dr. P.G. Kshirsagar S. Chand
- 3. Engineering Physics by R.K. Gaur and S.L. Gupta DhanpatRai

Reference Books:

- 1. Modern Engineering Physics by A.S. Vadudeva
- 2. University Physics by Young and Freedman

IT-1203 ENGINEERING GRAPHICS

Course Objectives:

- Understand the basics of Engineering Graphics and BIS conventions.
- Develop the graphical skills for communication of concepts, ideas and design of engineering products through technical drawings
- Demonstrate and practice the various profiles/curves used in engineering practice through standard procedures.
- Demonstrate and practice the orthographic projections of points, lines, planes, solids and section of solids
- Demonstrate and practice the development of surfaces of simple solids
- Familiarize the basic concept of isometric views clearly.

Course Outcomes:

- Develop simple engineering drawings by considering BIS standards.
- Able to draw different engineering curves with standard Procedures
- Comprehend the basics of orthographic projections and deduce orthographic projections of points, lines, planes and solids at different orientations in real life environment.
- Visualize clearly the sections of solids.
- Apply the concepts of development of surfaces while designing/analyzing any product.
- Recognize the significance of isometric drawing to relate 2D environment with 3D environment.

SYLLABUS

Introduction: Lines, Lettering and Dimensioning, Geometrical Constructions, and Scales.

Curves: Conic sections: General construction of ellipse, parabola and hyperbola. Construction of involutes of circle and polygons only. Normal and tangent to curves.

Projections of Points: Principal or Reference Planes, Projections of a point situated in any one of the four quadrants.

Projections of Straight Lines: Projections of straight lines parallel to both reference planes, perpendicular to one reference plane and parallel to other reference plane, inclined to one reference plane and parallel to the other reference plane.

Projections of Straight Line Inclined to Both the Reference Planes: Projections of Planes: Projection of Perpendicular planes: Perpendicular to both reference planes, perpendicular to one reference plane and parallel to other reference plane and perpendicular to one reference plane and inclined to other reference plane. Projection of Oblique planes. Introduction to Auxiliary Planes.

Projections of Solids: Types of solids: Polyhedra and Solids of revolution. Projections of solids in simple positions: Axis perpendicular to horizontal plane, Axis perpendicular to vertical plane and Axis parallel to both the reference planes, Projection of Solids with axis inclined to one reference plane and parallel to other and axes inclined to both the reference planes.

Sections of Solids: Perpendicular and inclined section planes, Sectional views and True shape of section, Sections of solids (Prism, Pyramid, Cylinder and Cone) in simple position only.

Development of Surfaces: Methods of Development: Parallel line development and radial line development. Development of a cube, prism, cylinder, pyramid and cone.

Isometric Views: Isometric projection, Isometric scale and Isometric view. Isometric view of Prisms, Pyramids, cylinder, cone, and their combinations.

Text Book:

Elementary Engineering Drawing by N.D.Bhatt, Charotar Publishing House.

Reference: Engineering Graphics by K.L. Narayana and P. Kannaiah, Tata Mc-Graw Hill

IT-1204 DATA STRUCTURES

Course Objectives:

- Assess how the choice of data structures and algorithm design methods impacts the performance of programs.
- Choose the appropriate data structure and algorithm design method for a specified application.
- Solve problems using data structures such as linear lists, stacks, queues, binary trees, heaps binary search trees, and graphs and writing programs for these solutions.

Course Outcomes:

- Describe how arrays, records, linked structures, stacks, queues, trees, and graphs are represented in memory and used by algorithm.
- Demonstrate different methods for traversing trees.
- Compare alternative implementations of data structures with respect to performance.
- Discuss the computational efficiency of the principal algorithms for sorting and searching

SYLLABUS

- 1. **Introduction to Data Structures**: Review of C Programming, Recursive Definition and Processes, Recursion in C, Simulation of Recursion, Efficiency of Recursion, Abstract Data Types, Meaning and Definition of Data Structures, Arrays
- 2. **Stacks**: Stack as an Abstract Data Type, Primitive Operations, Implementing Stack Operations using Arrays, Infix, Postfix and Prefix: Definitions, Evaluation and Conversions. **Queues**: Queue as an Abstract Data Type, Sequential Representation, Types of Queues, Operations, Implementation using Arrays.
- 3. **Linked List**: Operations, Implementation of Stacks, Queues and priority Queues using Linked Lists+, Circular Lists: Insertion, Deletion and Concatenation Operations, Stacks and Queues as Circular Lists, Doubly Linked Lists.
- 4. **Trees**: Binary Trees Definitions and Operations, Binary Tree Representation: Node Representation, Implicit array Representation, Binary Tree Traversal, Threaded Binary Trees and their Traversal, Trees and their Applications; Tree Searching: Insertion and Deletion of a node from a Binary Search Tree, Efficiency of Binary Search Tree operations.
- 5. **Searching**: Basic Searching Techniques: Dictionary as an Abstract Data Type, Algorithmic Notation, Sequential Searching and its Efficiency, Binary Search, InterpolationSearch.
- 6. **Sorting**: General Background: Efficiency, Asymptotic Notations, Efficiency of Sorting, Bubble Sort and Quick Sort and their Efficiency, Selection Sorting, Binary Tree Sort, Heap Sort, Insertion Sorts, Shell Sort, Address calculation Sort, Merge and Radix Sorts.
- 7. **Graphs and Their Application**: Definition of Graphs, Representation of Graphs, Transitive closure, Linked Representation of Graphs, Topological Ordering of nodes, Graph Traversal and Spanning Forests, Undirected Graphs and their Traversals, Applications of Graphs, Minimal Spanning Trees.

Textbooks:

- Data Structures Using C and C++ Yddish Langsam, Moshe J. Augenstein and Aaron M.Tanenbaum, Prentice Hall Of India (2nd Edition)
- 2. Data Structures, Algorithms and Applications with C++, Sahani Mc-Graw Hill.

IT-1205 DIGITAL LOGIC DESIGN

Course Objectives:

- To introduce the basic principles for design of combinational circuit and sequential circuits.
- To learn simple digital circuits in preparation for computer engineering.

Course Outcomes:

A student who successfully fulfills the course requirements will have demonstrated:

- An ability to define different number systems, binary addition and subtraction, 2's complement representation and operations with this representation.
- An ability to understand the different Boolean algebra theorems and apply them for logic functions.
- An ability to define the Karnaugh map for a few variables and perform an algorithmic reduction of logic functions.
- An ability to define the following combinational circuits: multiplexer, de-multiplexers encoders/decoders, comparators, arithmetic-logic units; and to be able to build simple circuits.
- An ability to understand asynchronous and synchronous sequential circuits, like counters and shift registers.
- An ability to understand memories like RAM and ROM, Programmable Logic Array and Programmable Array Logic.

Syllabus

- 1. **Binary Systems:** Digital Systems. Binary Numbers. Number Base Conversions. Octal and Hexadecimal Numbers. Complements. Signed Binary Numbers. Binary Codes. Binary Storage and Registers. Binary Logic
- Boolean Algebra and Logic Gates: Basic Definitions. Axiomatic Definition of Boolean Algebra. Basic Theorems and Properties of Boolean Algebra. Boolean Functions. Canonical and Standard Forms. OtherLogicOperations. Digital Logic Gates. Integrated Circuits.
- 3. **Combinational Logic Design, Gate-Level Minimization:** The Map Method. Four-Variable Map. Five-Variable Map. Product of Sums Simplification. Don't-Care Conditions. NAND and NOR Implementation. Other Two- Level Implementations. Exclusive-OR Function. Hardware Description Language (HDL).
- 4. **Combinational Logic:** Combinational Circuits. Analysis Procedure. Design Procedure. BinaryAdderSubtractor.DecimalAdder.BinaryMultiplier.MagnitudeComparator.Decode rs.Encoders. Multiplexers. HDL For Combinational Circuits.
- 5. **Sequential Logic Design, Synchronous Sequential Logic**: Sequential Circuits. Latches FlipFlops. Analysis of Clocked Sequential Circuits. HDLF or Sequential Circuits. StateReduct ionand Assignment. Design Procedure.

- 6. **Registers ad Counters:** Registers. Shift Registers. Ripple Counters. Synchronous Counters. Other Counters. HDL for Registers and Counters.
- 7. **Memory and Programmable Logic**: Introduction. Random-Access Memory. Memory Decoding, Error Detection and Correction. Read-Only Memory. Programmable Logic Array. Programmable Array Logic. Sequential Programmable Devices.

TEXTBOOK:

1. Digital Design, 3rdEdition, M.Morris Mano, Pearson Education.

REFERENCEBOOKS:

- 1. Digital Logic Design Principles, Norman Balabanian & Bradley Carlson, John Wiley & Sons(Asia) Pvt.Ltd.,2002
- 2. Fundamentals of Digital Logic with VHDL Design, Stephen Brown and Zvonko Vranesic, Tata McGraw-Hill Edition,2002

IT-1206 WORKSHOP LAB

Course Objectives:

- Get hands on experience with the working skills in Carpentry trade.
- Know how to work with Sheet Metal tools.
- Get familiar with the working skills of Metal Fitting operations.
- Get hands on experience with house hold electrical wiring.

Course Outcomes:

- Can be able to work with Wood Materials in real time applications.
- Can be able to build various parts with Sheet Metal in day-to-day life.
- Can be able to apply Metal Fitting skills in various applications.
- Can be able to apply this knowledge to basic house electrical wiring and repairs.

SYLLABUS

Carpentry: Any three jobs from – Half lap joint, Mortise and Tenon joint, Half – lap Dovetail joint, Corner Dovetail joint, Central Bridle joint.

Sheet Metal: Any three jobs from – Square tray, Taper tray(sides), Funnel, Elbow pipe joint.

Fitting: Any three jobs from – Square, Hexagon, Rectangular fit, Circular fit and Triangular fit.

House wiring: Any three jobs from – Tube light wiring, Ceiling fan wiring, Stair-case wiring, Corridor wiring.

References:

- 1. Elements of workshop technology, Vol.1 by S. K. and H. K. Choudary.
- 2. Work shop Manual / P.Kannaiah/ K.L.Narayana/ SciTech Publishers.
- 3. Engineering Practices Lab Manual, Jeyapoovan, SaravanaPandian, 4/e Vikas.

IT-1207 PHYSICS LAB

Course Objectives:

- To enable the students to acquire skill, technique and utilization of the Instruments
- Draw the relevance between the theoretical knowledge and to imply it in a practical manner with respect to analyze various electronic circuits and its components.
- To impart the practical knowledge in basic concepts of Wave optics, Lasers and Fiber optics.
- To familiarize the handling of basic physical apparatus like Vernier callipers, screw gauge, spectrometers, travelling microscope, laser device, optical fibre, etc.

Course Outcomes:

- Ability to design and conduct experiments as well as to analyze and interpret
- Ability to apply experimental skills to determine the physical quantities related to Heat, Electromagnetism and Optics
- The student will learn to draw the relevance between theoretical knowledge and the means to imply it in a practical manner by performing various relative experiments.

SYLLABUS

- 1. Determination of Radius of Curvature of a given Convex Lens By forming Newton's Rings.
- 2. Determination of Wavelength of Spectral Lines in the Mercury Spectrum by Normal Incidence method.
- 3. Study the Intensity Variation of the Magnetic Field along axis of Current Carrying Circular Coil.
- 4. Determination of Cauchy's Constants of a Given Material of the Prism using Spectrometer.
- 5. Determination of Refractive Index of Ordinary ray μ_0 and Extraordinary μ_e ray.
- 6. Determination of Thickness Given Paper Strip by Wedge Method.
- 7. Calibration of Low Range Voltmeter.
- 8. Calibration of Low Range Ammeter.
- 9. Determination of Magnetic Moment and Horizontal Component of Earth's Magnetic Field.
- 10. Lees Method Coefficient of thermal Conductivity of a Bad Conductor.
- 11. Carey Foster's Bridge Verification of laws of Resistance and Determination Of Specific Resistance.
- 12. Melde's Apparatus Frequency of electrically maintained Tuning Fork.
- 13. Photoelectric cell-Characteristics.
- 14. Planks Constants.
- 15. Laser- Diffraction.

IT-1208 DATA STRUCTURES LAB

Course Objectives:

- To implement stacks and queues using arrays and linked lists.
- To develop programs for searching and sorting algorithms.
- To write programs using concepts of various trees.
- To implement programs using graphs.

Course Outcomes:

- Student will be able to write programs to implement stacks and queues.
- Ability to implement various searching and sorting techniques.
- Ability to implement programs using trees and graphs.

SYLLABUS

List of Programs:

- 1. Write a C program for sorting a list using Bubble sort and then apply binary search.
- 2. Write a C program to implement the operations on stacks.
- 3. Write a C program to implement the operations on circular queues.
- 4. Write a C program for evaluating a given postfix expression using stack.
- 5. Write a C program for converting a given infix expression to postfix form using stack.
- 6. Write a C program for implementing the operations of a dequeue
- 7. Write a C program for the representation of polynomials using circular linked list and for the addition of two such polynomials
- 8. Write a C program for quick sort
- 9. Write a C program for Merge sort.
- 10. Write a C program for Heap sort
- 11. Write a C program to create a binary search tree and for implementing the in order, preorder, post order traversal using recursion
- 12. a) Write a C program for finding the transitive closure of a digraph
 - b)Write a C program for finding the shortest path from a given source to any vertex in a digraph using Dijkstra's algorithm
- 13. a)Write a C program for finding the Depth First Search of a graph. b)Write a C program for finding the Breadth First Search of a graph.