M.Sc.

(Applied Chemistry)

(Effective from the admitted batch of 2021-22)

Scheme and Syllabus

DEPARTMENT OF ENGINEERING CHEMISTRY
AU COLLEGE OF ENGINEERING
ANDHRA UNIVERSITY
VISAKHAPATNAM
PROGRAM OUTCOMES:

PO1: To provide students in the scientific skills and chemical knowledge essential to develop and apply the knowledge in chemical sciences for preparing chemists of exceptional skills and abilities.

PO2: To provide knowledge, application, skills in required areas of chemical education

PO3: To equip students with effective scientific communication skills

PO4: To encourage the pursuit of lifelong education

PO5: To develop each student into a committed individual with ethical and social responsibility.

PO6: Secure suitable employment in the areas of chemical industries like pharmaceutical, steel and metals, polymers, fuels and nuclear, environmental and pollution control, nanotechnology and composite materials, teaching and research, etc.

PROGRAM SPECIFIC OUTCOMES:

The students who complete the M.Sc. Applied Chemistry course shall:

PSO1: Have strong foundation in the fundamentals and applications of chemical knowledge and understanding

PSO2: Have the abilities to think critically, logically and analytically and solve problem in the area of chemical sciences, materials, environmental aspects, medicines and energy

PSO3: Have the abilities to carry out chemical experiments, record and analyze the results and design advanced models

PSO4: Have the abilities to use modern library and information retrieving tools to obtain information and assimilate to generate concepts and apply them in challenging situations

PSO5: Have the abilities to effectively communicate their knowledge and skills to other chemists and non-chemists in oral or written formats

PSO6: Have the personal attributes and ethical sensibilities to enable them to function as effective scientists and citizens
REGULATIONS

1. The duration of the course is for two academic years with total four semesters. The nature of the course is full-time.
2. Candidates for the degree of Master of Science in Applied Chemistry shall be required to have passed the B.Sc with Chemistry / Applied Chemistry / Industrial Chemistry as one the subject of this university or any other university recognized by the academic council as equivalent thereto.
3. The course and scope of instruction shall be as defined in the syllabus prescribed. (Annexure-III)
4. Candidate who takes instruction shall be required to take examinations at the end of each semester as specified in Annexure-I.
5. Each candidate has to undergo an internship for a duration of four weeks during the fourth semester in any chemical industry/ R&D / organization/ or at the department at their own expense and have to submit project report.
6. A candidate shall be declared to have passed in any course if he /she secures not less than "E" grade in theory and not less than "D" grade in the practical /Project, provided the result otherwise is withheld. There is no minimum pass marks for internal assessment marks both theory as well as practical.
 A candidate shall be deemed to have satisfied the minimum requirement for the award of the degree of M.Sc. Applied Chemistry.
 i. If he / she is declared to have passed all the subjects included in the scheme of instruction and examination and
 ii. if he /she secures 5.0 CGPA in each of the semesters by the end of the fourth semester.
 Further, a candidate shall be permitted to choose any course(s) to appear for improvement in case the candidate fails to secure the minimum prescribed SGPA/CGPA to enable the candidate to pass at the end of any semester examinations. There shall not be any provision for the improvement of internal assessment marks in any year /semester of study. Grades and calculation of SGPA and CGPA are given in Annexure-II

7. The successful candidates in the M.Sc Applied Chemistry degree examination shall be arranged in the order in which they are registered for the examination in the following classes on the basis of the CGPA. However, students who pass in any supplementary examination shall not be awarded Distinction even if they obtain a CGPA of 8.0 or above, they shall be considered as First Class only.

<table>
<thead>
<tr>
<th>Class</th>
<th>CGPA Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Class with Distinction</td>
<td>8.0 or more</td>
</tr>
<tr>
<td>First Class</td>
<td>7.0 or more but less than 8.0</td>
</tr>
<tr>
<td>Second Class/Pass</td>
<td>5.0 or more but less than 7.0</td>
</tr>
</tbody>
</table>

8. The Question course setting and valuation shall be as per the University regulations at the end of each semester.
9. The practical examinations shall be conducted and valued by both internal and external examiners at the end of each semester.
10. The viva- voce examination for Project Work shall be conducted both internal and external examiners at the end of the completion of project and after submission of the Project Report by each of the candidates.
11. Each practical/ laboratory carries 70 marks for external evaluation process in which both the internal and external examiners conducts the examination . Out of these 70 marks 10marks are allocated to Record and 10 marks allocated to Viva-voce examination of the student.
12. The Minimum attendance required by a candidate will be 75% of the total number for the working days in that semester. Provided that in special cases and for sufficient cause shown, the Vice-chancellor may, on the recommendation of the Principal and the Head of the department concerned, condone the deficiency in the average attendance to an extent of 9% for reasons such as ill health, if the application for condonation is submitted at the time of actual illness and is supported a certificate of an authorized medical officer approved by the Principal. However, 100% attendance should be maintained for all practicals/labs/Internship.

13. Each of the student has to study two MOOC courses from NPTEL/SWAYAM etc. one in the third semester and the other in the fourth semester of the programme and the grade obtained should be submitted to the Department/College/University for incorporation in the marks list along with the Grade/Course Completion Certificate. The Departmental Committee shall decide whether to accept or not the grade/score obtained by the student. The student has to complete each of these courses during the concerned semester period only.

14. Keeping in view of the objectives of NPE 2020 and the directives of the University, two value added courses have been included each in 3rd and 4th semesters of the course. Intellectual Property rights in 3rd semester and Research Methodology in the 4th semester under non-credit scheme. However, the students have to attend the examination and pass the examination similar to that of other subjects of the course.

15. The University may, from time to time, revise, amend or change the regulations, scheme of examination and syllabus. In the case of students already undergoing the course, the changes will take effect from the beginning of the following academic year after the change are introduced and shall cover the part of the course that remains to be completed.

-- 000 - -
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>Instruction Periods per week L-T-P</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
<th>Duration of External Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT 1.1</td>
<td>Inorganic Chemistry-I</td>
<td>Theory</td>
<td>4-0-0</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
<tr>
<td>ACT 1.2</td>
<td>Organic Chemistry-I</td>
<td>Theory</td>
<td>4-0-0</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
<tr>
<td>ACT 1.3</td>
<td>Physical Chemistry-I</td>
<td>Theory</td>
<td>4-0-0</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
<tr>
<td>ACT 1.4</td>
<td>Analytical Chemistry</td>
<td>Theory</td>
<td>4-0-0</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
<tr>
<td>ACP 1.5</td>
<td>Inorganic Chemistry Practical-I</td>
<td>Lab</td>
<td>0-0-6</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>3</td>
</tr>
<tr>
<td>ACP 1.6</td>
<td>Organic Chemistry Practical-I</td>
<td>Lab</td>
<td>0-0-6</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>3</td>
</tr>
<tr>
<td>ACP 1.7</td>
<td>Physical Chemistry Practical-I</td>
<td>Lab</td>
<td>0-0-6</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>16-0-18</td>
<td>490</td>
<td>210</td>
<td>700</td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>
Semester –II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>Instruction Periods per week L-T-P</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
<th>Duration of External Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT 2.1</td>
<td>Inorganic Chemistry-II</td>
<td>Theory</td>
<td>4-0-0</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
<tr>
<td>ACT 2.2</td>
<td>Organic Chemistry-II</td>
<td>Theory</td>
<td>4-0-0</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
<tr>
<td>ACT 2.3</td>
<td>Physical Chemistry-II</td>
<td>Theory</td>
<td>4-0-0</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
<tr>
<td>ACT 2.4</td>
<td>Environmental Chemistry</td>
<td>Theory</td>
<td>4-0-0</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
<tr>
<td>ACP 2.5</td>
<td>Inorganic Chemistry Practical-II</td>
<td>Lab</td>
<td>0-0-6</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>3</td>
</tr>
<tr>
<td>ACP 2.6</td>
<td>Organic Chemistry Practical-II</td>
<td>Lab</td>
<td>0-0-6</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>3</td>
</tr>
<tr>
<td>ACP 2.7</td>
<td>Physical Chemistry Practical-II</td>
<td>Lab</td>
<td>0-0-6</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>16-0-18</td>
<td>490</td>
<td>210</td>
<td>700</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Course Type</td>
<td>Instruction Periods per week</td>
<td>External Marks</td>
<td>Internal Marks</td>
<td>Total Marks</td>
<td>Duration of External Examination</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------------------</td>
<td>-------------</td>
<td>------------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------</td>
<td>----------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>ACT 3.1</td>
<td>Instrumental Methods of Analysis</td>
<td>Theory</td>
<td>4/0/0</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
<tr>
<td>ACT 3.2</td>
<td>Organic Spectroscopy</td>
<td>Theory</td>
<td>4/0/0</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
<tr>
<td>ACT 3.3</td>
<td>Organic Synthesis</td>
<td>Theory</td>
<td>4/0/0</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
<tr>
<td>ACT 3.4</td>
<td>Medicinal Chemistry</td>
<td>Theory</td>
<td>4/0/0</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
<tr>
<td>Elective</td>
<td>Energy Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surface Chemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACT 3.5*</td>
<td>Intellectual Property Rights</td>
<td>Theory</td>
<td>4/0/0</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>0</td>
</tr>
<tr>
<td>ACT 3.6</td>
<td>MOOC Course</td>
<td>Theory</td>
<td>ONLINE</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>As per the course</td>
<td>3</td>
</tr>
<tr>
<td>ACP 3.7</td>
<td>Quantitative Analysis Practical-I</td>
<td>Lab</td>
<td>0/0/6</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>6 Hours</td>
<td>3</td>
</tr>
<tr>
<td>ACP 3.8</td>
<td>Organic Chemistry Practical-III</td>
<td>Lab</td>
<td>0/0/6</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>6 Hours</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>20-0-12</td>
<td>560</td>
<td>240</td>
<td>800</td>
<td>25</td>
</tr>
</tbody>
</table>
Semester –IV

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>Instruction Periods per week L-T-P</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
<th>Duration of External Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT 4.1</td>
<td>Industries based on Organic Raw Materials</td>
<td>Theory</td>
<td>4/0/0</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
<tr>
<td>ACT 4.2</td>
<td>Fine Chemicals</td>
<td>Theory</td>
<td>4/0/0</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
<tr>
<td>ACT 4.3</td>
<td>Polymers and Plastics</td>
<td>Theory</td>
<td>4/0/0</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
<tr>
<td>ACT 4.4</td>
<td>Green Chemistry</td>
<td>Theory</td>
<td>4/0/0</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
<tr>
<td>ACT 4.4</td>
<td>Quantum Chemistry</td>
<td>Theory</td>
<td>4/0/0</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
<tr>
<td>ACT 4.4</td>
<td>Nuclear Chemistry</td>
<td>Theory</td>
<td>4/0/0</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
<tr>
<td>ACT 4.5*</td>
<td>MOOC Course</td>
<td>Theory</td>
<td>ONLINE</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>As per the course</td>
<td>0</td>
</tr>
<tr>
<td>ACT 4.6*</td>
<td>Research Methodology</td>
<td>Theory</td>
<td>4/0/0</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>0</td>
</tr>
<tr>
<td>ACP 4.6</td>
<td>Quantitative Analysis Practical-II</td>
<td>Lab</td>
<td>0/0/6</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>6 Hours</td>
<td>3</td>
</tr>
<tr>
<td>ACP 4.7</td>
<td>Applied Chemistry Practical</td>
<td>Lab</td>
<td>0/0/6</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>6 Hours</td>
<td>3</td>
</tr>
<tr>
<td>ACP 4.8</td>
<td>Project Work*</td>
<td>Internship</td>
<td>---</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>-----</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>20-0-12</td>
<td>560</td>
<td>240</td>
<td>800</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

*4 WEEKS Training in Chemical industry/R&D/Organization/Department
Value Added Course

Summary of Courses and Credits

<table>
<thead>
<tr>
<th>Semester</th>
<th>No. of Theory Courses</th>
<th>No. of Practical Courses</th>
<th>No. of MOOC courses</th>
<th>No. of Value Added Courses</th>
<th>No. of Projects</th>
<th>Total Marks</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>700</td>
<td>25</td>
</tr>
<tr>
<td>II</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>700</td>
<td>25</td>
</tr>
<tr>
<td>III</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>800</td>
<td>25</td>
</tr>
<tr>
<td>IV</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>800</td>
<td>25</td>
</tr>
<tr>
<td>TOTAL</td>
<td>16</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3000</td>
<td>100</td>
</tr>
</tbody>
</table>

Total Credits : 100
Total Marks 3000
Annexure-II

<table>
<thead>
<tr>
<th>S. No</th>
<th>Range of Marks</th>
<th>Grade</th>
<th>Grade Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>> 90≤100</td>
<td>O</td>
<td>10.00</td>
</tr>
<tr>
<td>2</td>
<td>> 80≤90</td>
<td>A</td>
<td>9.00</td>
</tr>
<tr>
<td>3</td>
<td>> 70≤80</td>
<td>B</td>
<td>8.00</td>
</tr>
<tr>
<td>4</td>
<td>> 60≤70</td>
<td>C</td>
<td>7.00</td>
</tr>
<tr>
<td>5</td>
<td>> 50≤60</td>
<td>D</td>
<td>6.00</td>
</tr>
<tr>
<td>6</td>
<td>≥40≤50</td>
<td>E</td>
<td>5.00</td>
</tr>
<tr>
<td>7</td>
<td>< 39</td>
<td>F</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Calculation of SGPA (Semester Grade Point Average) and CGPA (Cumulative Grade Point Average)

For example if a student gets the grades in one semester A, A, B, B, B, D in six subjects having credits 2(S1) 4(S2), 4(S3), 4(S4), 4(S5), 2(S6), respectively.

The SGPA is calculated as follows:

\[\text{SGPA} = \frac{9(A) \times 2(S1) + 9(A) \times 4(S2) + 8(B) \times 4(S3) + 8(B) \times 4(S4) + 8(B) \times 4(S5) + 6(D) \times 2(S6)}{2(S1) + 4(S2) + 4(S3) + 4(S4) + 4(S5) + 2(S6)} \]

\[= \frac{162}{20} = 8.10 \]

A student securing ‘F’ grade there by securing 0.0 grade points has to appear and secure at least ‘E’ grade at the subsequent examination(s) in that subject.

If a student gets the grades in another semester D, A, B, C, A, E, A in seven subjects having credits 4(S1), 2(S2), 4(S3), 2(S4), 4(S5), 4(S6), 2(S7) respectively.

\[\{6(D) \times 4(S1)+9(A)\times2(S2)+8(B)\times4(S3)+7(C)\times2(S4)+9(A)\times4(S5)+5(E)\times4(S6)+9(A)\times2(S7)\} \]

\[\text{SGPA} = \frac{162}{22} = 7.36 \]

\[\text{CGPA} = \frac{(9X2+9X4+8X4+8X4+6X2+6X4+9X2+8X4+7X2+9X4+5X4+9X2)}{4(S1)+2(S2)+4(S3)+2(S4)+4(S5)+4(S6)+2(S7)} \]

\[= 7.71 \]

A candidate has to secure a minimum of 5.0 SGPA for a pass in each semester. Further, a candidate will be permitted to choose any course (s) to appear for improvement in case the candidate fails to secure the minimum prescribed SGPA/CGPA to enable the candidate to pass at the end of any semester examination.

Further, classification of successful candidates is based on CGPA as follows.

Science, Engineering, Pharmacy (PG)/PG Diplomas:

Distinction – CGPA 7.0 or more
<table>
<thead>
<tr>
<th>Class</th>
<th>CGPA Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Class</td>
<td>6.0 or more but less than 7.0</td>
</tr>
<tr>
<td>II Class/Pass</td>
<td>5.0 or more but less than 6.0</td>
</tr>
</tbody>
</table>
Annexure-III
REVISED SYLLABUS FOR M.Sc. APPLIED CHEMISTRY
(with effective from 2021-22 admitted batch)

Semester-I

ACT 1.1: INORGANIC CHEMISTRY–I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>Instruction Periods per week</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
<th>Duration of External Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT 1.1</td>
<td>Inorganic Chemistry-I</td>
<td>Theory</td>
<td>4-0-0 (60)</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Objectives:
CO 1: To develop an insight into the basic knowledge of inorganic chemistry
CO 2: To understand chemical bonding, coordination compounds, f-block elements and their theories
CO 3: To apply the knowledge and understanding in the areas of chemical bonding, coordination compounds and f-block elements for solving existing challenges faced in various chemical and industrial areas

Learning Outcomes:
At the end of the course, the learners should be able to:
LO 1: Identify the principles, structure and reactivity of selected coordination compounds
LO 2: Interpret their electronic spectra and magnetic properties.
LO 3: Utilize the principles of transition metal coordination complexes in understanding functions of chemical systems.

Unit-I
Chemical Bonding (12 hours)
Hybridization, VSEPR-theory and its importance - Molecular orbital theory as applied to homonuclear and simple hetero nuclear diatomic molecules (non-mathematical approach only)- Fajan’s rules for prediction of non-polar character, Electron neutrality principle and back bonding.

Unit -II
Inorganic Cage and Ring Compounds (12 hours)
Preparation, structure and reactions of boranes, carboranes, metallocarboranes, boron–nitrogen (H₃B₃N₃H₃), phosphorus–nitrogen (N₃P₃Cl₆) and sulphur–nitrogen (S₄N₄, (SN)x) cyclic compounds. Electron counting in boranes – Wades rules (Polyhedral skeletal electron pair theory). Isopoly and heteropoly acids.

Unit -III
Fundamentals of Coordination Compounds (12 hours)
Theories of metal-ligand bond: Valence bond theory Geometries of coordination numbers, 4-tetrahedral and square planar and 6-octahedral. Limitations, Inner and outer orbital complexes— Crystal field theory: Salient features, Splitting of metal orbitals in regular octahedral, square planar, tetrahedral, square pyramidal and trigonal bipyramidal geometries. Measurement of crystal field splitting energy, High spin and low spin octahedral complexes. Crystal field stabilization energy.
Unit -IV
Applications of Coordination Compounds (12 hours)
Factors affecting the magnitude of crystal field splitting. Limitations of crystal field theory. Application of crystal field theory to account for spectral and magnetic properties of complexes. Jahn-Teller distortion. Introduction to Molecular orbital theory of complex compounds –Nephelauxetic effect. Pearson's concept of hard and soft acids and bases, Hard and soft acids and bases (HSAB) rule - Classification of metals and Ligands as class 'a' and class 'b'. Applications of HSAB rule - Predicting feasibility of a reaction and stability of compounds.

Unit -V
Chemistry of Lanthanides and Actinides (12 hours)
Stable oxidation states-Lanthanide and actinide contraction-Absorption spectra of lanthanides and actinides and their magnetic properties-separation of Lanthanides and actinides, uses of lanthanides and their compounds.

Text Books:
4. Inorganic Chemistry by Shriver and Atkins, Oxford University Press (1999
6. Introductory Quantum Chemistry by A.K. Chandra (Tata McGrawhill)
7. Chemistry of Lanthanides by T. Healler, Chapman and Hall.

Mapping of PO/CO

<table>
<thead>
<tr>
<th>CO/PO</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
<th>PO 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO 1</td>
<td>H</td>
<td>M</td>
<td>L</td>
<td>M</td>
<td>L</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>CO 2</td>
<td>M</td>
<td>L</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>CO 3</td>
<td>H</td>
<td>M</td>
<td>M</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>

L - LOW M- MEDIUM H-HIGH
ACT 1.2: ORGANIC CHEMISTRY–I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>Instruction Periods per week (Total)</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
<th>Duration of External Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT 1.2</td>
<td>Organic Chemistry</td>
<td>Theory</td>
<td>4-0-0 (60)</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Objectives:
CO 1: To develop an insight the basic knowledge of organic chemistry
CO 2: To understand structure and reactivity, aromatic nucleophilic substution, stereochemistry, pericyclic reactions and heterocyclic compounds
CO 3: To apply the knowledge and understanding in the areas of structure and reactivity, aromatic nucleophilic substution, stereochemistry, pericyclic reactions and heterocyclic compounds for solving existing challenges faced in various chemical and industrial areas

Learning Outcomes:
At the end of the course, the learners should be able to:
LO 1: Identify the structure and reactivity, aromatic nucleophilic substution, stereochemistry, pericyclic reactions and heterocyclic compounds
LO 2: Interpret structure and reactivity, aromatic nucleophilic substution, stereochemistry, pericyclic reactions and heterocyclic compounds.
LO 3: Utilize the principles structure and reactivity, aromatic nucleophilic substution, stereochemistry, pericyclic reactions and heterocyclic compounds in understanding functions of chemical systems.

Unit-I
Structure and Reactivity (12 hours)

Unit-II:
Aromatic Nucleophilic Substitution (12 hours)
The S_NAr, benzyne and S_RN1 mechanisms. Reactivity - Effect of substrate structure, leaving group and attacking nucleophile. The von Richter, Sommelet-Hauser and Smiles rearrangements.

Addition to Carbon-Carbon Multiple Bonds:
Mechanism of metal hydride reduction of saturated and unsaturated carbonyl compounds, acids, esters and nitriles. Addition of Grignard reagents to carbonyl and unsaturated carbonyl compounds. Wittig reaction. Mechanism of condensation reactions involving enolate anions—Aldol, Knoevenagel, Claisen, Mannich, Benzoin, Perkin and Stobbe reactions.
Unit-III:

Stereochemistry (12 hours)

Unit-IV:

Pericyclic Reactions (12 hours)

Molecular orbital symmetry, Frontier orbitals of ethylene, 1,3-butadiene, 1,3,5-hexatriene and allyl system. Classification of pericyclic reactions. FMO and PMO approach. Electrocyclic reactions — conrotatory and disrotatory motions, 4n, 4n+2 and allyl systems. Cycloadditions — antarafacial and suprafacial additions, 4n and 4n+2 systems, 2+2 addition of ketenes, 1,3 dipolar cycloadditions and cheletropic reactions. Sigmatropic rearrangements — suprafacial and antarafacial shifts of H, sigmatropic shifts involving carbon moieties, 3,3- and 5,5- sigmatropic rearrangements. Claisen, Cope and aza-Gope rearrangements. Ene reaction

Unit-V:

Chemistry of Heterocyclic Compounds (12 hours)

Synthesis and reactivity of Benzofuran, Benzothiophene, Indole, Pyrimidine, Pyrazine, Oxazole, Quinoline and Isoquinoline

Text Books:

1. A guide book to mechanisms in Organic chemistry by Peter Sykes: ELBS.
4. Reaction mechanism in Organic chemistry by Mukerjee and Singh, Macmillan India.
6. Chemistry of Natural Products by K.W. Bentley (Editor).
7. Stereochemistry of carbon compounds by E.Eliel, McGraw –Hill.
ACT 1.3: PHYSICAL CHEMISTRY–I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>Instruction Periods per week L-T-P (Total)</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
<th>Duration of External Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT 1.3</td>
<td>Physical Chemistry</td>
<td>Theory</td>
<td>4-0-0 (60)</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Objectives:
CO 1: To develop an insight the basic knowledge of physical chemistry
CO 2: To understand solid state chemistry, chemical kinetics and thermodynamics for chemical systems
CO 3: To apply the knowledge and understanding in the areas of solid state chemistry, chemical kinetics and thermodynamics for solving existing challenges faced in various chemical and industrial areas

Learning Outcomes:
At the end of the course, the learners should be able to:
LO 1: Identify the solid state chemistry, chemical kinetics and thermodynamics
LO 2: Interpret solid state chemistry, chemical kinetics and thermodynamics
LO 3: Utilize the principles of solid state chemistry, chemical kinetics and thermodynamics

Unit-I
Fundamentals of Solid State Chemistry (12 hours)

Unit-II
Advances in Solid State Chemistry (12 hours)
Defects in solids-point defects- linear defects-Frenkel & Schotky defect (Mathematical derivations). Band theory of solids- semiconductors – Extrinsic & Intrinsic non stoichiometric, organic semiconductors, p-n junction, rectifiers, transistors, metal purification by zone refining, preparation of single crystals of Si & Ge (Czochralski crystal pulling method) doping, Integrated circuits.

Unit-III
Fundamentals of Chemical Kinetics (12 hours)
Introduction, order, molecular its rate constant specific reaction rate, zero\(^{\text{th}}\) order first order second order third order rate equations (with suitable gaseous phase and liquid phase reaction determination of order of reactions (method of integrations, Time to complete definite fraction of the reactions, differential method, isolation method) opposing, reactions Hydrogen-bromine, hydrogen- chlorine reactions, consecutive reactions photolysis of acetaldehyde.
Unit-IV

Advances in Chemical Kinetics (12 hours)
Theories of reaction rates-(collision and transition state teas). Fast reaction Flow systems Stoppers flow method Effect of substitute Hemet equations Taft equation primary and secondary salt effects, effect of dielectric constant of solvent, ion – ion interaction, catalysis, Acid – base Enzyme catalysis. Oscillating reactions, Autocatalysis, chemical chaos

Unit-V

Laws of Thermodynamics: (12 hours)

Text Books:

1. Solid state chemistry by Kittel,
2. Chemical Kinetics- Laidiler,
Course Objectives:
CO 1: To develop an insight the basic knowledge of analytical chemistry
CO 2: To understand errors, statistics and sampling, volumetric and gravimetric analysis, applied analysis, electroanalytical methods
CO 3: To apply the knowledge and understanding in the areas of errors, statistics and sampling, volumetric and gravimetric analysis, applied analysis, electroanalytical methods for solving existing challenges faced in various chemical and industrial areas

Learning Outcomes:
At the end of the course, the learners should be able to:
LO 1: Identify the errors, statistics and sampling, volumetric and gravimetric analysis, applied analysis, electroanalytical methods
LO 2: Interpret errors, statistics and sampling, volumetric and gravimetric analysis, applied analysis, electroanalytical methods.
LO 3: Utilize the principles of errors, statistics and sampling, volumetric and gravimetric analysis, applied analysis, electroanalytical methods

Unit-I
Errors, Statistics and Sampling (12 hours)
Accuracy and precision, Error, types of error, systematic and random errors, minimization of errors, mean and standard deviations, reliability of results, confidence interval, comparison of results, student T test, F test, Comparison of two samples (Paired T test), Sampling, the basis of sampling, sampling procedure, sampling statistics.

Unit-II
Theory of Volumetric and Gravimetric Analysis (12 hours)

Unit-III
Complexometric Equilibria (12 hours)
Introduction, Titration curves, Types of EDTA titrations, Methods of End Point Detection, Types of Complexometric Titrations (a) Direct Titration (b) Back Titration (c) Replacement titration (d) Indirect Titration (e) Applications of Complexometric Titrations
Unit-IV
Applied Analysis (12 hours)
Analytical procedures involved in environmental monitoring. Water quality - BOD, COD, and DO - Air pollution monitoring sampling, collection of air pollutants-SO₂, and NO₂ - Analysis of metals, alloys and minerals: Analysis of brass and steel. Analysis of limestone

Unit-V
Electroanalytical methods: (12 hours)
Basic principle, instrumentation, and applications of Polargraphy, Cyclic voltammetry, anodic stripping voltametry, amperometry, and conductometry

Text Books:
1. Analytical Chemistry Principles and Techniques, L.G. Hargis, Prentice Hall, USA.
ACP 1.5: INORGANIC CHEMISTRY PRACTICAL - I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>Instruction Periods per week</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
<th>Duration of External Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACP 1.5</td>
<td>Inorganic Chemistry Practical-I</td>
<td>Lab</td>
<td>0-0-6 (90)</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Objectives:
CO 1: To develop an insight into the preparation of inorganic complexes
CO 2: To understand the process of preparation of inorganic complexes
CO 3: To acquire skills in the preparation of inorganic complexes

Learning Outcomes:
At the end of the course, the learners should be able to:
LO 1: Prepare various inorganic complexes
LO 2: Develop skill in handling apparatus, measure the quantities and carry out the reaction and analyze the product formed
LO 3: Applies the skill in preparing novel complexes

Synthesis of Inorganic Complexes and their Characterization
Preparation of selected inorganic complex compounds and their characterization

Some suggested complex compounds

(1) VO(acac)₂
(2) TiO(C₆H₈NO)₂.2H₂O
(3) cis-K[Cr(C₂O₄)₂(H₂O)₂]
(4) Na[Cr(NH₃)₂(SCN)₄]
(5) Mn(acac)₃
(6) K₃[Fe(C₂O₄)₃]
(7) [Co(NH₃)₆][Co(NO₂)₆]
(8) cis-[Co(trien)(NO₂)₂]Cl.H₂O
(9) Hg[Co(SCN)₄]
(10) [Co(Py)₂Cl₂]
(11) [Ni(NH₃)₆]Cl₂
(12) Ni(dmg)₂
(13) [Cu(NH₃)₄]SO₄.H₂O

Text Books:
ACP 1.6: ORGANIC CHEMISTRY PRACTICAL - I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>Instruction Periods per week</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
<th>Duration of External Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACP 1.6</td>
<td>Organic Chemistry Practical-I</td>
<td>Lab</td>
<td>0-0-6 (90)</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Objectives:
CO 1: To develop an insight into the preparation of organic compounds in various reactions
CO 2: To understand the process of preparation of organic through various reactions
CO 3: To acquire skills in the preparation of organic compounds, their separation, purification and identification

Learning Outcomes:
At the end of the course, the learners should be able to:
LO 1: Prepare various organic compounds using various reactions
LO 2: Develop skill in handling apparatus, measure the quantities and carryout the reaction, separate the products, purify them and analyze the products formed
LO 3: Applies the skill in preparing novel organic moieties

Synthesis of Organic compounds

Synthesis, purification and characterization of about ten organic compounds involving one or two stages.

List of some suggested compounds

1. β-Napthyl methyl ether from β-Naphthol
2. m-dinitrobenzene from Nitrobenzene
3. Azo dye from primary amine
4. Aromatic acid from ester
5. Benzanilide from aniline
6. p-nitroaniline from Acetanilide
7. p-Bromo acetanilide from aniline
8. Phthalimide from phthalic acid
9. 1,2,3-Tribromo benzene from aniline
10. Benzanilide from Benzophenone

Text Books:

ACP 1.7: PHYSICAL CHEMISTRY PRACTICAL - I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>Instruction Periods per week</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
<th>Duration of External Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACP 1.7</td>
<td>Physical Chemistry Practical-I</td>
<td>Lab</td>
<td>0-0-6 (90)</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Objectives:
CO 1: To develop an insight into the measurement of various quantitative characteristics of chemical systems
CO 2: To understand the process of measurement of various chemical systems
CO 3: To acquire skills in the setting up of apparatus, measurement, recording and interpretation of results related to various quantitative characteristics

Learning Outcomes:
At the end of the course, the learners should be able to:
LO 1: Set up of apparatus, measurement, recording and interpretation of results related to various quantitative characteristics
LO 2: Develop skill in setting up of apparatus, measurement, recording and interpretation of results related to various quantitative characteristics
LO 3: Applies the skill in measuring the properties of other novel systems

1. Critical Solution temperature of phenol-water system; effect of Electrolyte.
2. Equilibrium constant of KI +I₂→KI₃.
3. Hydrolysis of an ester – A Kinetic study.
4. Dimerisation constant of benzoic acid by the distribution method (Benzene –water system)
5. Inversion of Sucrose –A kinetic study.
6. Conductometric titration of mixture of weak and strong acid with sodium hydroxide.
7. Determination of solubility product of a sparingly soluble salt by conductometric method.

Text Books:
1. Practical Physical Chemistry by Alexander .
Semester-II
ACT 2.1: INORGANIC CHEMISTRY–II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>Instruction Periods per week L-T-P (Total)</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
<th>Duration of External Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT 2.1</td>
<td>Inorganic Chemistry-II</td>
<td>Theory</td>
<td>4-0-0 (60)</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Objectives:
CO 1: To acquire the basic knowledge of metal-ligand equilibria, electronic spectra, ligand substitution reactions in octahedral and square planar complexes, electron transfer reactions in coordination complexes
CO 2: To understand metal-ligand equilibria, electronic spectra, ligand substitution reactions in octahedral and square planar complexes, electron transfer reactions in coordination complexes
CO 3: To apply the knowledge and understanding in the areas of metal-ligand equilibria, electronic spectra, ligand substitution reactions in octahedral and square planar complexes, electron transfer reactions in coordination complexes

Learning Outcomes:
At the end of the course, the learners should be able to:
LO 1: Explain metal-ligand equilibria, electronic spectra, ligand substitution reactions in octahedral and square planar complexes, electron transfer reactions in coordination complexes
LO 2: Apply metal-ligand equilibria, electronic spectra, ligand substitution reactions in octahedral and square planar complexes, electron transfer reactions in coordination complexes
LO 3: Evaluate the metal-ligand equilibria, electronic spectra, ligand substitution reactions in octahedral and square planar complexes, electron transfer reactions in coordination complexes

Unit-I
Metal-ligand Equilibria in Solution (12 hours)

Unit-II
Electronic Spectra of Metal Complexes (12 hours)
Unit-III
Ligand Substitution Reactions in Octahedral Complexes (12 hours)
Transition state or activated complex –substrate –Attacking reagents: Electrophilic reagents, Nucleophilic reagents – Types of substitution of reactions (SN) - Electrophilic or metal substitution reactions (SE). SN1 or dissociation mechanism; SN2 or association or displacement mechanism. Acid and base hydrolysis reactions of cobalt (III) complexes

Unit- IV
Ligand Substitution Reactions in Square Planar Complexes (12 hours)
The trans effect – uses of trans effect –different theories of trans effect –mechanism and the factors involved in the substitution reactions in square planar complexes

Unit-V
Electron Transfer Reactions in Coordination Complexes (12 hours)
Mechanism of one electron transfer reactions –Inner sphere (atom or group transfer) mechanism –outer sphere (or Electron transfer) mechanism .Structure and bonding in some binuclear metal atom clusters

Text Books:
4. Inorganic Chemistry by Shriver and Atkins, Oxford University Press (1999
6. Introductory Quantum Chemistry by A.K. chandra (Tata McGrawhill)
7. Chemistry of Lanthanides by T. Healler, chapman and Hall.
ACT 2.2: ORGANIC CHEMISTRY–II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>Instruction Periods per week</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
<th>Duration of External Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT 2.2</td>
<td>Organic Chemistry-II</td>
<td>Theory</td>
<td>4-0-0 (60)</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Objectives:
CO 1: To acquire the basic knowledge of aliphatic and aromatic substitution, mechanisms, photochemistry and natural products, enzymes and lipids
CO 2: To understand To acquire the basic knowledge of aliphatic and aromatic substitution, mechanisms, photochemistry and natural products, enzymes and lipids
CO 3: To apply To acquire the basic knowledge of aliphatic and aromatic substitution, mechanisms, photochemistry and natural products, enzymes and lipids

Learning Outcomes:
At the end of the course, the learners should be able to:
LO 1: Explain To acquire the basic knowledge of aliphatic and aromatic substitution, mechanisms, photochemistry and natural products, enzymes and lipids
LO 2: Apply To acquire the basic knowledge of aliphatic and aromatic substitution, mechanisms, photochemistry and natural products, enzymes and lipids
LO 3: Evaluate To acquire the basic knowledge of aliphatic and aromatic substitution, mechanisms, photochemistry and natural products, enzymes and lipids

Unit-I
Aliphatic Electrophilic Substitution: (12 hours)
Bimolecular mechanisms- SE 2 and SEi. The SE 1 mechanism, electrophilic substitution accompanied by double bond shifts. Effect of substrates, leaving group and the solvent polarity on the reactivity. The Haloform reaction and Haller-Bauer reaction

Aromatic Electrophilic Substitution
The arenium ion mechanism, orientation and reactivity, energy profile diagrams. The ortho, para, meta orientations. Quantitative treatment of reactivity in substrates and electrophiles. Diazonium coupling, Vilsmeir reaction, Gattermann-Koch reaction.

Unit-II
Mechanisms of Named Reactions and Rearrangements: (12 hours)

Free Radical Reactions: Basic concept of free radical formation, their stability and their reactions. Polymerization, Allylic halogenation (NBS), oxidation of aldehydes to carboxylic acids, auto-oxidation, coupling of alkynes and arylation of aromatic compounds by diazonium salts. Sandmeyer reaction. Free radical rearrangement. Hunsdiecker reaction.

Unit-III
Organic Photochemistry: (12 hours)
Jablonski diagram - cis-trans isomerism, Paterno-Buchi reaction, Norrish Type I and II reactions - Barton reaction - photoreduction of ketones di-pi methane rearrangement. photochemistry of arenes.
Reagents in organic synthesis: Lithium diisopropylamide (LDA), Dicyclohexyl Carbodiimide (DCC), Trimethylsilyl iodide, Gilman’s reagent, DDQ, Prevost Hydroxylation, Phosphorous and Sulphur ylides, Ceric ammonium nitrate, Tebbe reagent.

Unit-IV
Chemistry of Natural Products: (12 hours)
Classification, Isolation, synthesis and structural elucidation of the following.
Terpenoids : Camphor, α-Pinene and Santonin
Alkaloids : Papaverine, Nicotine, Quinine and Atropine.
Purines : Caffeine
Steroids : Cholesterol

Unit-V
Bio-Organic Chemistry: (12 hours)
Enzymes: Introduction, enzymes, mechanism of enzyme action, kinds of reactions catalysed by enzymes, co-enzymes, biomimetic chemistry and biotechnological applications of enzymes
Lipids: Lipid classification, brief account of the chemical properties and structure of lipids (without structure elucidation) & biological role of the following: fatty acids, acyl glycerols, phospholipids, plasmalogens, sphingolipids, glycolipids, steroids, eicosanoids - prostaglandins, thromboxanes, & leukotrienes, leptin and visfatin.

Text Books:

4. Reaction mechanism in Organic chemistry by Mukerjee and Singh, Macmillan India.
6. Chemistry of Natural Products by K.W. Bentley (Editor).
7. Stereochemistry of carbon compounds by E.Eliel, McGraw –Hill.
ACT 2.3: PHYSICAL CHEMISTRY–II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>Instruction Periods per week</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
<th>Duration of External Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT 2.3</td>
<td>Physical Chemistry-II</td>
<td>Theory</td>
<td>4-0-0 (60)</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Objectives:
CO 1: To acquire the basic knowledge of photochemistry, electrochemistry, catalysis and molecular spectroscopy
CO 2: To understand photochemistry, electrochemistry, catalysis and molecular spectroscopy
CO 3: To apply photochemistry, electrochemistry, catalysis and molecular spectroscopy

Learning Outcomes:
At the end of the course, the learners should be able to:
LO 1: Explain photochemistry, electrochemistry, catalysis and molecular spectroscopy
LO 2: Apply photochemistry, electrochemistry, catalysis and molecular spectroscopy
LO 3: Evaluate photochemistry, electrochemistry, catalysis and molecular spectroscopy

Unit-I
Photochemistry:
(12 hours)

Unit-II
Electrochemistry:
(12 hours)

Unit-III
Surface Chemistry:
(12 hours)

Unit-IV
Catalysis:
(12 hours)
Homogeneous and Heterogeneous catalysis, Theories of catalysis, Acid – base catalysis, Autocatalysis, Enzyme catalysis, Activated complex theory Michaelis – Menten catalysis and its mechanism.
Unit-V

Molecular Spectroscopy: (12 hours)

Electromagnetic radiation – rotation and vibration of diatomic molecules- selection rules – rotation of polyatomic molecules – microwave spectroscopy – vibration of polyatomic molecules infrared and Raman spectroscopy

Text Books:

1. Physical chemistry – S. Glasstone (Macmillan)
2. Physical chemistry – W.J. Moore (Orient Longmans)
3. Physical chemistry – G.M. Barrow (Mc Graw – Hill)
4. Physical chemistry - S.A. Maron –Prutton (Collier – Macmillan)
5. Physical chemistry – G.W. Castellan (Addison – Wesley)
6. Thermodynamics – N.V.Rao (Macmillan)

Please arrange all the references from your subjects in the following pattern without fail to make them Uniform

ACP 2.5: INORGANIC CHEMISTRY PRACTICAL - II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>Instruction Periods per week</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
<th>Duration of External Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACP 2.5</td>
<td>Inorganic Chemistry Practical-II</td>
<td>Lab</td>
<td>0-0-6 (90)</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Objectives:
CO 1: To develop an insight into the analysis of inorganic salt mixtures
CO 2: To understand the process of analysis of inorganic salt mixtures
CO 3: To acquire skills in the analysis of inorganic salt mixtures

Learning Outcomes:
At the end of the course, the learners should be able to:
LO 1: analyse of inorganic salt mixtures
LO 2: Develop skill in analysis of inorganic salt mixtures
LO 3: Apply the skill in the analysis of new inorganic salt mixtures

Analysis of inorganic salt mixtures
(minimum four mixtures)

Course Objectives:
CO 1: To acquire the basic knowledge of
CO 2: To understand
CO 3: To apply

Learning Outcomes:
At the end of the course, the learners should be able to:
LO 1: Explain
LO 2: Apply
LO 3: Evaluate

Semi-micro qualitative analysis of six radical mixtures containing one interfering radical and one less familiar cation each.

Study of Systematic procedure

Spot tests.

Text Books

- text book of Practical Inorganic Chemistry by AI Vogel, ELBS
- 2. Laboratory manual of Engineering Chemistry by Dr Sudha rani
ACP 2.6: ORGANIC CHEMISTRY PRACTICAL - II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>Instruction Periods per week</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
<th>Duration of External Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACP 2.6</td>
<td>Organic Chemistry Practical-II</td>
<td>Lab</td>
<td>0-0-6 (90)</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Objectives:
CO 1: To develop an insight into the identification of organic compounds by systematic analysis
CO 2: To understand the process of identification of organic compounds by systematic analysis
CO 3: To acquire skills in the identification of organic compounds by systematic analysis

Learning Outcomes:
At the end of the course, the learners should be able to:
LO 1: Identify an organic compound by systematic analysis
LO 2: Develop skill in identification of organic compounds by systematic analysis
LO 3: Apply the skill in the identification of new organic compounds by systematic analysis

Identification of the unknown organic compounds

Systematic identification of organic compounds – preliminary tests, detection of extra elements, solubility, common functional group tests (determination of functional group/s in a single compound, if present), preparation of two rational derivatives

The given organic compound must be identified by comparing the melting point/boiling point of the compound and melting points of its derivatives with the literature

List of suggested compounds
Glucose, fructose, benzaldehyde, p-anisaldehyde, p-chloro benzaldehyde, acetophenone, phenol, cresols, naphthols, esters, p-chloro benzoic acid, aniline, p-tolune, p-anisidine, p-chloroaniline, diphenyl amine, N,N-dimethylaniline, benzamide, naphthalene and anthracene.

TEXT BOOKS
ACP 2.7: PHYSICAL CHEMISTRY PRACTICAL - II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>Instruction Periods per week</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
<th>Duration of External Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACP 2.7</td>
<td>Physical Chemistry Practical-II</td>
<td>Lab</td>
<td>0-0-6 (90)</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Objectives:
CO 1: To develop an insight into the various experimental techniques related to distribution, heat of a reaction, adsorption, binary mixtures, phase diagrams
CO 2: To understand the process of various experimental techniques related to distribution, heat of a reaction, adsorption, binary mixtures, phase diagrams
CO 3: To acquire skills in the various experimental techniques related to distribution, heat of a reaction, adsorption, binary mixtures, phase diagrams

Learning Outcomes:
At the end of the course, the learners should be able to:
LO 1: Carryout various experimental techniques related to distribution, heat of a reaction, adsorption, binary mixtures, phase diagrams
LO 2: Develop skill in various experimental techniques related to distribution, heat of a reaction, adsorption, binary mixtures, phase diagrams
LO 3: Apply the skill in various experimental techniques related to distribution, heat of a reaction, adsorption, binary mixtures, phase diagrams for various new systems

List of Experiments:
1. Formula of Cuprammonium cation – distribution method.
2. Heat of Neutralisation .
3. Heat of solution.
4. Study of the adsorption of oxalic acid on charcoal.
5. Study of binary liquid mixture involving azeotrope .
6. Study of a two component system involving eutectic or compound formation .
7. Phase diagram of a three component system (chloroform – acetic acid – water)

Text Books:
1. Practical Physical Chemistry by Alexander
SEMESTER-III
ACT 3.1: INSTRUMENTAL METHODS OF ANALYSIS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>Instruction Periods per week L-T-P (Total)</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
<th>Duration of External Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT 3.1</td>
<td>Instrumental Methods of Analysis</td>
<td>Theory</td>
<td>4-0-0 (60)</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Objectives:
CO 1: To acquire basic knowledge of various instrumental methods of analysis
CO 2: To understand various instrumental methods of analysis
CO 3: To apply various instrumental methods of analysis

Learning Outcomes:
At the end of the course, the learners should be able to:
LO 1: Explain visible spectrophotometry, chromatography, ion-exchange, thermal and image analysis techniques
LO 2: Apply visible spectrophotometry, chromatography, ion-exchange, thermal and image analysis techniques
LO 3: Evaluate visible spectrophotometry, chromatography, ion-exchange, thermal and image analysis techniques

Unit I:
UV-Visible Spectrophotometry: (12 hours)
Principle, Beer -Lambert Law, instrumentation, advantages, applications and limitations of Spectrophotometry, single and double beam spectrophotometers Atomic absorption spectrometry (AAS), Flame photometry (AES) - Basic principles, theory, instrumentation and applications

Unit II:
Chromatography: (12 hours)
Chromatography :Introduction to chromatography, Basic principles, instrumentation and Applications of different chromatography techniques (TLC, column chromatography, paper chromatography, Gas chromatography and HPLC).

Unit III:
Ion-Exchange Methods: (12 hours)
General discussion, Typical synthetic Cation and Anion exchange resins. Action of ion exchange resins. Ion-exchange equilibria, Ion-exchange capacity, Determination of cation and anion exchange capacity, Column operation and ion exchange chromatography

Unit IV:
Thermal Methods of Analysis (12 hours)
Unit V:
Image Analysis Techniques: (12 hours)

Text Books:
3. Modern analytical chemistry; David Harvey; McGraw Hill
4. Principles and practice of analytical chemistry; F. W. Fifield & D. Kealey, Blackwell Science
6. Principles of Instrumental Analysis, Skoog, Holler and Wieman, Harcourt Asia,
ACT 3.2: ORGANIC SPECTROSCOPY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>Instruction Periods per week</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
<th>Duration of External Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT 3.2</td>
<td>Organic Spectroscopy</td>
<td>Theory</td>
<td>4-0-0 (60)</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Objectives:
CO 1: To acquire basic knowledge of spectroscopic techniques for organic analysis
CO 2: To understand various spectroscopic techniques for organic analysis
CO 3: To apply various spectroscopic techniques for organic analysis

Learning Outcomes:
At the end of the course, the learners should be able to:
LO 1: Explain IR, UV, NMR and Mass spectroscopic techniques and their instrumentation for organic analysis
LO 2: Apply visible IR, UV, NMR and Mass spectroscopic techniques and their instrumentation for organic analysis
LO 3: Evaluate IR, UV, NMR and Mass spectroscopic techniques and their instrumentation for organic analysis

Unit I:
Infrared Spectroscopy: (12 hours)
Units of frequency, wave length and wave number-molecular vibrations-modes. Factors influencing vibrational frequencies of organic molecules. Effect of hydrogen bonding and solvent effect on vibrational frequencies, overtones, combination bands and Fermi resonance. Characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols and amines. Detailed study of vibrational frequencies of carbonyl compounds (ketones, aldehydes, esters, amides, acids, anhydrides, lactones, lactams and conjugated carbonyl compounds). Interpretation of spectra.

Unit II:
Ultraviolet Spectroscopy: (12 hours)
Introduction, the absorption laws, measurement of the spectrum, chromophores, standard works of reference, definitions, applications of UV spectroscopy to conjugated dienes, trienes, unsaturated carbonyl compounds and aromatic compounds. Optical rotatory dispersion and circular dichroism: Phenomena of ORD and CD. Classification of ORD and CD Curves; Cotton effect curves and their application to stereochemical problems; the Octant rule and its application to alicyclic ketones.

Unit III:
NMR Spectroscopy: (12 hours)
Nuclear Magnetic Resonance -Introduction, basic principles, the chemical shift, the intensity of NMR signals - factors affecting the chemical shifts, spin-spin coupling, some simple splitting patterns - the magnitude of coupling constants-first order spectrum-interpretation of spectra. Chemical shift reagents- nuclear Overhauser effect (NOE). The Fourier transform technique. Structure determination of organic compounds by 1 H NMR spectra.
Unit IV:

Multinuclear 1H NMR and 13C NMR: (12 hours)
Proton coupled, off resonance decoupled, proton noise decoupled 13C NMR spectra. Assignment of chemical shifts, additively effect, characteristic chemical shifts of common organic compounds and functional groups, The DEPT experiment. 2D NMR techniques : 1H – 1H COSY, 1H – 13C COSY – HMBC, and NOESY.

Unit V:

Mass Spectroscopy: (12 hours)
Basic principles, mass analyzers, ionization methods: EI, CI, FAB, MALDI, ES. Liquid chromatography and mass spectrometry, types of ions and fragmentations, even electron rule, nitrogen rule, isotope abundance, McLafferty rearrangement. Organic structure elucidation, techniques of ion production, ion and daughter ions, molecular ion and isotope abundance. Nitrogen rule energetics of fragmentation, metastable ions, common fragmentation pathways, fragmentation pattern of common chemical classes. Interpretation of spectra.

Text Books:

2. Organic Spectroscopy, W.Kemp, ELBS Macmillan
ACT 3.3: ORGANIC SYNTHESIS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>Instruction Periods per week</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
<th>Duration of External Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT 3.3</td>
<td>Organic Synthesis</td>
<td>Theory</td>
<td>L-T-P (Total)</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Objectives:

CO 1: To acquire knowledge of formation of C-C, C= C bonds, synthetic applications, oxidation and reduction, design of organic synthesis and organometallic chemistry

CO 2: To understand formation of C-C, C= C bonds, synthetic applications, oxidation and reduction, design of organic synthesis and organometallic chemistry

CO 3: To apply formation of C-C, C= C bonds, synthetic applications, oxidation and reduction, design of organic synthesis and organometallic chemistry

Learning Outcomes:

At the end of the course, the learners should be able to:

LO 1: Explain formation of C-C, C= C bonds, synthetic applications, oxidation and reduction, design of organic synthesis and organometallic chemistry

LO 2: Apply formation of C-C, C= C bonds, synthetic applications, oxidation and reduction, design of organic synthesis and organometallic chemistry

LO 3: Evaluate formation of C-C, C= C bonds, synthetic applications, oxidation and reduction, design of organic synthesis and organometallic chemistry

Unit I:

Formation of Carbon–Carbon Single Bonds and Double Bonds: (12 hours)

Alkylation via enolate, the enamine and related reactions, Umpolung (dipole inversion) – the Aldol reaction – Applications of Organo-palladium, Organo-nickel and Organo-copper reagents - Sulphur ylides - β-Elimination reactions, Pyrolytic syn eliminations, Sulphoxide-sulphenate Rearrangement - the Wittig and related reactions- alkenes from Arylsulphonylhydrazones – Claisen rearrangement of allyl vinyl ethers.

Unit II:

Synthetic Applications of Organo Boranes and Organo Silanes (12 hours)

Organo Silanes: Synthetic applications of trimethylsilylchloride, dimethyl–t-butylsilyl chloride, trimethylsilylcyanide, trimethylsilyliodide and trimethylsilyltriflate. Synthetic applications of α-silylcarbanions and β-silylcarboniumions.

Unit III:

Oxidation and Reduction: (12 hours)

Oxidations of hydrocarbons, alkenes, alcohols aldehydes and ketones oxidative coupling reactions. Use of Pb(OAc)₄, NBS, CrO₃, SeO₂, MnO₂, Alkoxyluphonium salts, KMnO₄, OsO₄, RuO₄, Peracid and Tl(III)nitrRATE.
Metal based and non-metal based oxidations of alcohols (chromium, manganese, silver, ruthenium, DMSO, and hypervalent iodine). (b) Peracids oxidation of alkenes and carbonyls. (c) Alkenes to diols (manganese, osmium based), alkenes to carbonyls with bond cleavage (manganese, ruthenium, and lead based, ozonolysis), and alkenes to alcohols/carbonyls without bond cleavage (hydroboration-oxidation, Wacker oxidation, and selenium based allylic oxidation). (d) Asymmetric epoxidations (Sharpless, Jacobsen, and Shi epoxidations) and Sharpless asymmetric dihydroxylation.

Reduction:
(a) Catalytic homogeneous and heterogeneous hydrogenation, Wilkinson catalyst. (b) Metal based reductions using Li/Na in liquid ammonia, sodium, magnesium, zinc, titanium, and samarium. (c) Hydride transfer reagents: NaBH4, L-selectride, K-selectride, Luche reduction, LiAlH4, DIBAL-H, Red-Al, Trialkylsilanes, and Trialkylstannane. (d) Enantioselective reductions (Chiral Boranes, Corey-Bakshi-Shibata) and Noyori asymmetric hydrogenation. Catalytic hydrogenation (homogeneous and heterogeneous), Reduction by dissolving metals, Reduction by Hydride Transfer Reagents, Reduction with Hydrazine and Diimide, Selectivity in reduction of nitroso and nitro compounds, Reductive cleavage.

Unit IV:
Design of Organic Synthesis (12 hours)
Basic principles and terminology of retrosynthesis, synthesis of aromatic compounds, one group and two group C-X disconnections, one group C-C and two group C-C disconnections, amine and alkene synthesis, important strategies of retrosynthesis, functional group transposition, important functional group interconversions Protecting groups: Protection and deprotection of hydroxy, carboxyl, carbonyl, carboxy amino groups and carbon-carbon multiple bonds; chemo- and regioselective protection and deprotection; illustration of protection and deprotection in synthesis.

Unit-V
Organometallic Chemistry: (12 hours)
Introduction to organometallic compounds, the 18 electron rule, types of ligands (neutral, spectator ligands, alkenes and alkynes), metal-metal bonds, metal carbonyls, reactions of organometallic compounds (ligand substitution reactions), metal clusters Catalytic reactions of organometallic compounds and isolobal analogy, Sandwich compounds and IR applications in the organometallic compounds.

TEXT BOOKS
1. Modern Methods of Organic Synthesis by W. Carruthers
2. Modern Synthetic Reactions by H.O. House
3. Organic Synthesis by Robert & Ireland
4. Designing Organic Synthesis by B Staurt Warron
5. Organic Synthesis by S. Warrant
ACT 3.4: MEDICINAL CHEMISTRY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>Instruction Periods per week</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
<th>Duration of External Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT 3.4</td>
<td>Medicinal Chemistry</td>
<td>Theory</td>
<td>4-0-0 (60)</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Objectives:
CO 1: To acquire basic knowledge of drug design, pharmacokinetics and pharmacodynamics, and various classes of drugs
CO 2: To understand drug design, pharmacokinetics and pharmacodynamics, and various classes of drugs
CO 3: To apply drug design, pharmacokinetics and pharmacodynamics, and various classes of drugs

Learning Outcomes:
At the end of the course, the learners should be able to:
LO 1: Explain drug design, pharmacokinetics and pharmacodynamics, and various classes of drugs
LO 2: Apply drug design, pharmacokinetics and pharmacodynamics, and various classes of drugs
LO 3: Evaluate drug design, pharmacokinetics and pharmacodynamics, and various classes of drugs

Unit I:
Drug Design (12 hours)

Unit II:
Pharmacokinetics and Pharmacodynamics (12 hours)
Introduction to drug absorption, disposition, elimination using pharmacokinetics, important pharmacokinetic parameters in defining drug disposition and in therapeutics. Mention of uses of pharmacokinetics in drug development process. Introduction, elementary treatment of enzyme stimulation, enzyme inhibition, sulphonamides, membrane active drugs, drug metabolism, xenobiotics, biotransformation, significance of drug metabolism in medicinal chemistry.

Unit III:
Antineoplastic Agents: (12 hours)
Introduction, cancer chemotherapy, special problems, role of alkylating agents and antimetabolites in treatment of cancer. Mention of carcinolytic antibiotics and mitotic

Unit IV:
Cardiovascular Drugs: *(12 hours)*

Unit V:
Local Anti-infective Drugs and Antibiotics *(12 hours)*

Psychoactive Drugs: Introduction, neurotransmitters, CNS depressants, general anaesthetics, mode of action of hypnotics, sedatives, anti-anxiety drugs, benzodiazepines, buspirone, neurochemistry of mental diseases. Antipsychotic drugs - the neuroleptics, antidepressants, butyrophenones, serendipity and drug development, stereochemical aspects of psychotropic drugs. Synthesis of diazepam, alprazolam, phenytoin, ethosuximde, trimethadione, barbiturates.

SUGGESTED BOOKS FOR READING

1. Introduction to Medicinal Chemistry, A Gringuage, Wiley-VCH.
5. Goodman and Gilman's Pharmacological Basis of Therapeutics, McGraw-Hill.
9. Introduction to medicinal chemistry, Alex Gringauz-1996
ACT 3.5: INTELLECTUAL PROPERTY RIGHTS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>Instruction Periods per week</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
<th>Duration of External Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT 3.5</td>
<td>Intellectual Property Rights</td>
<td>Theory</td>
<td>4-0-0 (60)</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Objectives:
- **CO 1:** To acquire the basic knowledge of Intellectual Property Rights, its nature, trademarks, copyrights, patent rights, trade secrets and their new developments.
- **CO 2:** To understand Intellectual Property Rights, its nature, trademarks, copyrights, patent rights, trade secrets and their new developments.
- **CO 3:** To apply Intellectual Property Rights, its nature, trademarks, copyrights, patent rights, trade secrets and their new developments.

Learning Outcomes:
At the end of the course, the learners should be able to:
- **LO 1:** Explain Intellectual Property Rights, its nature, trademarks, copyrights, patent rights, trade secrets and their new developments.
- **LO 2:** Apply Intellectual Property Rights, its nature, trademarks, copyrights, patent rights, trade secrets and their new developments.
- **LO 3:** Evaluate Intellectual Property Rights, its nature, trademarks, copyrights, patent rights, trade secrets and their new developments.

Unit I:
Introduction to Intellectual Property Rights (12 hours)
Introduction, types of intellectual property, international organizations, agencies and treaties, importance of intellectual property rights. International overview on intellectual property, international – trade mark law, copyright law, international patent law, and international development in trade secrets law.

Unit II:
Nature of Intellectual Property Rights (12 hours)

Unit III:
Trademarks and Copyrights (12 hours)
Purpose and function of trademarks, acquisition of trade mark rights, protectable matter, selecting, and evaluating trade mark, trade mark registration processes. Fundamental of copyright law, originality of material, rights of reproduction, rights to perform the work publicly, copy right ownership issues, copy right registration, notice of copy right, international copyright law.
Unit IV:

Patent Rights and Trade Secrets and Unfair Competition
(12 hours)

Unit IV:

New development of Intellectual Property Rights
(12 hours)
Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies - New developments in trade mark law; copy right law, patent law, intellectual property audits.

Text Books:

1. Intellectual property right, Deborah. E. Bouchoux, Cengage learning.
ACT 3.6: MOOC COURSE

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>Instruction Periods per week</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
<th>Duration of External Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT 3.6</td>
<td>MOOC Course</td>
<td>ONLINE</td>
<td>0-4-0 (60)</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>As per the course</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Objectives:
- **CO 1:** To acquire the basic knowledge of an advanced area in chemistry through MOOC programmes offered by NPTEL-SWAYAM
- **CO 2:** To appreciate the advantages of learning by online mode
- **CO 3:** To advance the knowledge in the areas of interest

Learning Outcomes:
- At the end of the course, the learners should be able to:
 - **LO 1:** Successfully complete the course as per his/ her choice
 - **LO 2:** Produce his/ her continuous performance report
 - **LO 3:** Produce his mastery of the course by providing the pass certificate with the grade awarded by NPTEL SWAYAM

ACP 3.7: QUANTITATIVE ANALYSIS PRACTICAL - I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>Instruction Periods per week</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
<th>Duration of External Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACP 3.7</td>
<td>Quantitative Analysis Practical - I</td>
<td>Lab</td>
<td>0-0-6 (Total)</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Objectives:
CO 1: To acquire the basic knowledge of
CO 2: To understand
CO 3: To apply

Learning Outcomes:
At the end of the course, the learners should be able to:
LO 1: Explain
LO 2: Apply
LO 3: Evaluate

VOLUMETRIC ANALYSIS

1. Preparation of vanadium(V) from ammonium metavanadate and standardisation of vanadium(V) with iron (II)
2. Preparation of cerium (IV) sulphate from cerium(IV) oxide and standardization of cerium (IV) sulphate with iron (II)
3. Determination of iron (III) by photo chemical reduction method.
4. Determination of iron (III) and iron (II) present in a synthetic mixture (stannous chloride method).
5. Determination of copper (II) present in a brass sample (iodometric method)
6. Determination of chromium (IV) present in a sample of potassium dichromate.
7. Determination of calcium hardness and magnesium hardness of water sample.

TEXT BOOKS

1. A text book of Practical Inorganic Chemistry by AI Vogel, ELBS
2. Laboratory manual of Engineering Chemistry by Dr Sudha rani
ACP 3.8: ORGANIC CHEMISTRY PRACTICAL - III

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>Instruction Periods per week</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
<th>Duration of External Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACP 3.8</td>
<td>Organic Chemistry Practical - III</td>
<td>Lab</td>
<td>0-0-6 (60)</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Objectives:
CO 1: To acquire the basic knowledge of separation of an organic binary mixture and identify each of the compound by following systematic procedure
CO 2: To understand separation of an organic binary mixture and identify each of the compound by following systematic procedure
CO 3: To apply separation of given unknown organic binary mixture and identify each of the compound by following systematic procedure

Learning Outcomes:
At the end of the course, the learners should be able to:
LO 1: Explain the procedure and chemistry for separation of an organic binary mixture and identify each of the compound by following systematic procedure
LO 2: Apply separation of given unknown organic binary mixture and identify each of the compound by following systematic procedure
LO 3: Acquire skill in the separation of an organic binary mixture and identify each of the compound by following systematic procedure

Organic Mixture Analysis

1. Separation of organic compounds of a mixture (minimum of four mixtures)
2. Systematic identification of the separated organic compounds by functional group analysis, chemical reaction and derivatisation
3. Separation of organic compounds of a mixture by TLC

Text Books

1. A.I. Vogel - A Text book of practical organic chemistry, ELBS.
SEMESTER-IV
ACT 4.1: INDUSTRIES BASED ON ORGANIC RAW MATERIALS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>Instruction Periods per week L-T-P (Total)</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
<th>Duration of External Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT 4.1</td>
<td>Industries based on Organic Raw Materials</td>
<td>Theory</td>
<td>4-0-0 (60)</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Objectives:
CO 1: To acquire the basic knowledge of starch, cellulose, pulp, paper, oils, soaps, detergents, surface coatings, food processing and food by-products
CO 2: To understand the chemistry of starch, cellulose, pulp, paper, oils, soaps, detergents, surface coatings, food processing and food by-products
CO 3: To apply starch, cellulose, pulp, paper, oils, soaps, detergents, surface coatings, food processing and food by-products

Learning Outcomes:
At the end of the course, the learners should be able to:
LO 1: Explain starch, cellulose, pulp, paper, oils, soaps, detergents, surface coatings, food processing and food by-products
LO 2: Apply starch, cellulose, pulp, paper, oils, soaps, detergents, surface coatings, food processing and food by-products
LO 3: Evaluate starch, cellulose, pulp, paper, oils, soaps, detergents, surface coatings, food processing and food by-products

Unit I:
Starch: (12 hours)

Unit II:
Cellulose, Pulp and Paper (12 hours)
Composition of wood -Structure, Chemical and Physical properties of cellulose. Sources and uses of cellulose. Enzymatic and chemical hydrolysis of cellulose- conversion of cellulose to alcohol. Industrial preparation of chemical cellulose. Cellulose derivatives: cellulose nitrate, cellulose acetate and carboxy methyl cellulose. Different methods of wood pulping: Manufacture and cases of different qualities of paper products like cardboard, Bond paper, newsprint, writing paper, tissue paper and filter paper.

Unit III:
Oils, Fats and Waxes (12 hours)
Introduction- Sources of Animal fats and oils -Classification: Vegetable, animal and mineral oils – Manufacture of Vegetable oils, Chemical properties and uses – Extraction and processing of Vegetable oils, hydrogenation of oils- Industrial production of cotton seed and
soya bean oils. Chemical modification of fats and oils: Isomerization, transesterification and interesterifications. **Waxes**: Introduction- Classification, properties and uses of waxes.

Unit IV:

Soaps, Detergents and Surface Coatings (12 hours)

Soaps: Manufacture, Raw materials, typical soaps, Glycerin recovery from soap manufacture

Unit V:

Food Processing and Food By-products (12 hours)

Introduction- Types of Food processing: refining and milling, canning, concentration, freezing, drying, pasteurization and sterilization, fermentation, irradiation. **Food Byproducts**: Introduction- Manufacture and properties of Leather, gelatin and adhesives - animal glues, synthetic resins.

TEXT BOOKS:

1. Shreve’s Chemical process industries by GEORGE T.AUSTIN
2. Industrial chemistry by B.K.SHARMA.
3. Engineering chemistry by S S DARA.
ACT 4.2: FINE CHEMICALS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>Instruction Periods per week</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
<th>Duration of External Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT 4.2</td>
<td>Fine Chemicals</td>
<td>Theory</td>
<td>4-0-0 (60)</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Objectives:
CO 1: To acquire the basic knowledge of chemistry of dyes, fragrances and flavours, agrochemicals, Vitamins, Minerals and Toxic chemicals
CO 2: To understand chemistry of dyes, fragrances and flavours, agrochemicals, Vitamins, Minerals and Toxic chemicals
CO 3: To apply chemistry of dyes, fragrances and flavours, agrochemicals, Vitamins, Minerals and Toxic chemicals

Learning Outcomes:
At the end of the course, the learners should be able to:
LO 1: Explain chemistry of dyes, fragrances and flavours, agrochemicals, Vitamins, Minerals and Toxic chemicals
LO 2: Apply chemistry of dyes, fragrances and flavours, agrochemicals, Vitamins, Minerals and Toxic chemicals
LO 3: Evaluate chemistry of dyes, fragrances and flavours, agrochemicals, Vitamins, Minerals and Toxic chemicals

Unit I:
Chemistry of Dyes: (12 hours)

Unit II:
Chemistry of Perfumes and Flavours: (12 hours)
Perfumes: Theory of olfaction and mechanism, relation between perfumes and phermones, classification of perfumes, chemistry, manufacture and isolation of the following compounds – Citral, Geraniol, Nerol, Linalool, citronellol, hydroxy citronillol cinal, jasmine, civetone and Muskone, acetylcane, acetyl Longifolene. Flavours: The difference between perfumes and flavours, classification of flavour compounds, chemistry of species and oleoresins, pepper, ginger, aniseed, cumineed, Coriander, Cellery and cardamon, Chemistry of some major flavours like coffee, tea, cocoa, onion. Assessment of flavours and blending of flavours. Chemistry and application of flavour compounds: Menthol, Piperitone, Vanillin, Eugenol, monosodium glutamate and carvone.
Unit III:
Chemistry of Agrochemicals: (12 hours)
Insecticides: DDT, BHC, Aldrin, Endosulfon; Herbicides: 2,4-dichloro phenoxy acetic acid, dalapon, paraquat; Fungicides: Bordeaux mixture, Copper oxychloride, Zineb, Benomyl (Benlate); Rodenticides: Warfarin, Sodium monofluoroacetate, Zinc phosphide; Plant-Growth Modifiers: Growth Regulators, Second-Growth Inhibitors and Defoliants and Yield Stimulators

Unit IV:
Chemistry of Vitamins: (12 hours)
Classification, functions, requirements, distribution in foods, loss during processing, effects of deficiency and characteristic properties of vitamins – B1(Thiamine), B2 (Riboflavin), B3 (Pantothenic acid), B6 (pyridoxine), B12 (Cyanocobalmine), H (Biotin), P (Rutin), C (ascorbic acid), A (Retinol), D (Calciferol), E (Tocopherol), K (naphthoquinone), Folic acid (PGA) and Niacin - Methods for the determination of Water soluble vitamins : (B1, B2, B3, B6, B12, C and folic acid and fat soluble vitamins: A, D, E and K by visible spectrophotometric technique only.

Unit V:
Chemistry of Essential Minerals, Toxic Metals: (12 hours)
Classification, functions, requirements, distribution in foods, loss during processing, effects of deficiency and characteristic properties of Essential Minerals: Calcium, Magnesium, Sodium, Potassium, Calcium, Phosphorous, Iron, Zinc, Copper, Manganese, Selenium, Iodine and chloride. Toxic Metals and their Toxic mechanism: Arsenic, Cadmium, Lead, Mercury, Chromium, Nickel

Text Books:

6. Chemical process industries by R.N. Shreeve.
ACT 4.3: POLYMERS AND PLASTICS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>Instruction Periods per week L-T-P (Total)</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
<th>Duration of External Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT 4.3</td>
<td>Polymers and Plastics</td>
<td>Theory</td>
<td>4-0-0 (60)</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Objectives:
CO 1: To acquire the basic knowledge of polymers, mechanism and kinetics of polymerisation, analysing and testing of polymers, compounding of plastics and polymer composites, Rubbers, Elastomers and Adhesives
CO 2: To understand polymers, mechanism and kinetics of polymerisation, analysing and testing of polymers, compounding of plastics and polymer composites, Rubbers, Elastomers and Adhesives
CO 3: To apply polymers, mechanism and kinetics of polymerisation, analysing and testing of polymers, compounding of plastics and polymer composites, Rubbers, Elastomers and Adhesives

Learning Outcomes:
At the end of the course, the learners should be able to:
LO 1: Explain polymers, mechanism and kinetics of polymerisation, analysing and testing of polymers, compounding of plastics and polymer composites, Rubbers, Elastomers and Adhesives
LO 2: Apply polymers, mechanism and kinetics of polymerisation, analysing and testing of polymers, compounding of plastics and polymer composites, Rubbers, Elastomers and Adhesives
LO 3: Evaluate polymers, mechanism and kinetics of polymerisation, analysing and testing of polymers, compounding of plastics and polymer composites, Rubbers, Elastomers and Adhesives

Unit I:
Introduction to Polymers: (12 hours)

Unit II:
Mechanism and Kinetics of Polymerisation (12 hours)
Unit III:
Analysing and Testing of Polymers
(12 hours)
Weight average and number average molecular weights of polymers ratio of M_w and M_n -

Unit IV:
Compounding of Plastics and Polymer Composites
(12 hours)
Compounding of plastics – Additives: Stabilizers, anti oxidants, flame retardants, smoke suppressants - Physical Properties Modification: Plasticizers, Lubricants, Nucleating, processing, mould release, curing, antifogging, coupling and anti-microbial agents - Fabrication techniques of plastic - Polymer composites

Unit V:
Rubbers, Elastomers and Adhesives
(12 hours)

Text Books:
1. Introduction to Polymer Chemistry, Raymond B, Seymour.
2. Polymer science, V.R. Gowariker et al ., New Age International (P) Ltd, New Delhi.
ACT 4.4: RESEARCH METHODOLOGY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>Instruction Periods per week L-T-P (Total)</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
<th>Duration of External Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT 4.4</td>
<td>Research Methodology</td>
<td>Theory</td>
<td></td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Objectives:
CO 1: To acquire the basic knowledge of introduction to research, literature review, research proposal, data collection and research report preparation and research evaluation
CO 2: To understand introduction to research, literature review, research proposal, data collection and research report preparation and research evaluation
CO 3: To apply introduction to research, literature review, research proposal, data collection and research report preparation and research evaluation

Learning Outcomes:
At the end of the course, the learners should be able to:
LO 1: Explain introduction to research, literature review, research proposal, data collection and research report preparation and research evaluation
LO 2: Apply introduction to research, literature review, research proposal, data collection and research report preparation and research evaluation
LO 3: Evaluate introduction to research, literature review, research proposal, data collection and research report preparation and research evaluation

Unit I:
Introduction to Research: (12 hours)
Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

Unit II:
Literature Review and Research Gaps: (12 hours)
Survey of Literature including Patents – Chemical Nomenclature – Primary and Secondary sources including Reviews, Treatises and Monographs - Abstraction of a Research Paper – Possible ways of getting familiar with Current literature – Art of Literature Review and Writing Review Articles

Unit III:
Research Problem and Research Proposal: (12 hours)

Unit IV:
Errors, Statistics and Sampling Techniques: (12 hours)
Classification of Errors, Accuracy, Precision; Minimization of Errors, Mean Deviation, Standard Deviation, Distribution of Random Errors. The basics of Sampling, Sampling
Procedure, Sampling Statistics, Sampling Physical State, Crushing and Grinding, Hazards in sampling

Unit V:
Research Report and Publication of Results: (12 hours)

Text Books:
1. Wayne Goddard and Stuart Melville - Research Methodology: An Introduction
2. Ranjit Kumar, Research Methodology: A Step by Step Guide for beginners 2nd Edition
ACT 4.5: MOOC COURSE

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>Instruction Periods per week L-T-P (Total)</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
<th>Duration of External Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT 4.5</td>
<td>MOOC Course</td>
<td>ONLINE</td>
<td>0-4-0 (60)</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>As per the course</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Objectives:
CO 1: To acquire the basic knowledge of an advanced area in chemistry through MOOC programmes offered by NPTEL-SWAYAM
CO 2: To appreciate the advantages of learning by online mode
CO 3: To advance the knowledge in the areas of interest

Learning Outcomes:
At the end of the course, the learners should be able to:
LO 1: Successfully complete the course as per his/her choice
LO 2: Produce his/her continuous performance report
LO 3: Produce his mastery of the course by providing the pass certificate with the grade awarded by NPTEL SWAYAM
Course Code: ACP 4.6
Course Title: Quantitative Analysis Practical - II
Course Type: Lab
Instruction Periods per week: 0-0-6 (60)
External Marks: 70
Internal Marks: 30
Total Marks: 100
Duration of External Examination: 3 Hours
Credits: 4

Course Objectives:
CO 1: To acquire the basic skills in quantitative analysis using potentiometers, pH meters, conductometers, colorimeters
CO 2: To understand the methods of quantitative analysis using potentiometers, pH meters, conductometers, colorimeters
CO 3: To apply quantitative analysis using potentiometers, pH meters, conductometers, colorimeters

Learning Outcomes:
At the end of the course, the learners should be able to:
LO 1: Explain the procedures of quantitative analysis using potentiometers, pH meters, conductometers, colorimeters
LO 2: Determine the quantitative analysis using potentiometers, pH meters, conductometers, colorimeters
LO 3: Evaluate quantitative analysis using potentiometers, pH meters, conductometers, colorimeters

POTENTIOMETRIC TITRATIONS
1. Determination of Iron (II) with chromium (VI).
2. Determination of Iron (II) with cerium (IV).
3. Determination of Vanadium (V) with Iron (II).

pH METRIC TITRATIONS
4. Titration of a strong acid against a strong base.
5. Titration of a weak acid against a strong base.
6. Titration of a mixture of weak acid and a strong acid against a strong base.

CONDUCTOMETRIC TITRATIONS
7. Titration of a weak acid against a strong base.
8. Determination of percentage purity of AgNO₃ Solution using KCl.

COLOURIMETRIC TITRATIONS
10. Determination of Fe (II).

Text Books:
1. A text book of Practical Inorganic Chemistry by Al Vogel, ELBS
2. Laboratory manual of Engineering Chemistry by Dr Sudha rani
ACP 4.7: APPLIED CHEMISTRY PRACTICAL

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>Instruction Periods per week L-T-P (Total)</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
<th>Duration of External Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACP 4.7</td>
<td>Applied Chemistry Practical</td>
<td>Lab</td>
<td>0-0-6 (60)</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Objectives:
CO 1: To acquire the basic knowledge of
CO 2: To understand
CO 3: To apply

Learning Outcomes:
At the end of the course, the learners should be able to:
LO 1: Explain
LO 2: Apply
LO 3: Evaluate

1. Determination of saponification value and Acid value of a vegetable oil
2. Determination of Iodine value of a non-edible oil
3. Determination of Glucose
4. Analysis of Honey
5. Determination of Molecular Weight of a Polymer
6. Determination of Aspirin
7. Preparation of Soap
8. Preparation of cold Cream
9. Preparation of Shampoo
10. Preparation of Phenol- Formaldehyde Resin
11. Preparation of Copper pigment
12. Preparation of Paracetamol
13. Preparation of Fluorescein dye
14. Isolation of Caffeine
15. Isolatiopn of Lycopene
ACP 4.8: PROJECT WORK

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Type</th>
<th>Instruction Periods per week L-T-P (Total)</th>
<th>External Marks</th>
<th>Internal Marks</th>
<th>Total Marks</th>
<th>Duration of External Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACP 4.8</td>
<td>Project Work</td>
<td>Internship</td>
<td>0-0-24 (144)</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>3 Hours</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Objectives:
CO 1: To develop scientific aptitude, critical thinking, experiment planning through the conduct of project
CO 2: To understand experiment planning, reporting and auditing the experimental data
CO 3: To acquire interpretation to result discussion, research writing and research presentation.

Learning Outcomes:
At the end of the course, the learners should be able to:
LO 1: Investigate various aspects related to the chemical process/ QC/ instrumental analysis/ chemistry problem
LO 2: Appreciate the literature and its relevance to his/her topic of interest
LO 3: Write research proposal independently
LO 4: Would generate interest in current topics of research

Project Work:

Project supervisor at the chemical industry/ R&D unit/ laboratory would be allocated at the start of the project work and research project would be undertaken in discussion with the project supervisor. At the end of the project tenure the student has to prepare a project report as per the university guidelines. Upon submission of the project report, the projects would be evaluated based on a project presentation and viva-voce examination.