ANDHRA UNIVERSITY
DEPARTMENT OF ELECTRONICS
AND COMMUNICATION
ENGINEERING

PROGRAM : M.TECH(VLSI)
REGULATION AND SYLLABUS
EFFECTIVE FROM 2019-2020 BATCH
M.TECH VLSI

Scheme of Instruction and Examination with effect from 2019-2020 admitted batch onwards

Under AICTE Model Curriculum
M.Tech (VLSI), B.Tech+M.Tech(5/6 and 6/6), Two Year (Four Semesters)
Scheme to be valid with effect from the admitted batch of 2019 – 2020

I-Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Name of the Subject</th>
<th>Periods/Week</th>
<th>Max. Marks</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTVL1.1</td>
<td>VLSI Design Techniques</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>MTVL1.2</td>
<td>Analog IC design</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>MTVL1.3</td>
<td>Elective – I (Digital Signal Processing/ Application Specific Integrated Circuit(ASIC)/ Hardware Software Co Design/ Advanced Microprocessors & Microcontrollers)</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>MTVL1.4</td>
<td>Elective – II (CPLD and FPGA Architecture & Applications / VHDL Modelling of Digital Systems/EDA Tools)</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>MTVL1.5</td>
<td>Research Methodology & IPR</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>MTVL1.6</td>
<td>Audit Course</td>
<td>3</td>
<td>-</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>MTVL1.7</td>
<td>HDL Programming LAB-I</td>
<td>-</td>
<td>3</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>MTVL1.8</td>
<td>Analog IC Design LAB</td>
<td>-</td>
<td>3</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>6</td>
<td>350</td>
<td>800</td>
</tr>
</tbody>
</table>

II-Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Name of the Subject</th>
<th>Periods/Week</th>
<th>Max. Marks</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTVL2.1</td>
<td>Digital System Design</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>MTVL2.2</td>
<td>Algorithms for VLSI design automation</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>MTVL2.3</td>
<td>Elective – III (Low Power VLSI Design/ Wireless Communication and networks/ RF& Microwave Integrate Circuits)</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>MTVL2.4</td>
<td>Elective – IV (Microcontroller and Embedded Systems/ Digital</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>Code</td>
<td>Name of the Subject</td>
<td>Periods/Week</td>
<td>Max. Marks</td>
<td>Total Credits</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--------------</td>
<td>------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>MTLV2.5</td>
<td>Audit Course</td>
<td>3 - -</td>
<td>100 100 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTLV2.6</td>
<td>HDL Programming LAB-II</td>
<td>- 3 -</td>
<td>100 100 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTLV2.7</td>
<td>Mixed Signal Simulation LAB</td>
<td>- 3 -</td>
<td>100 100 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTLV2.8</td>
<td>Mini Project with Seminar</td>
<td>- 3 -</td>
<td>100 100 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 9</td>
<td>280 520 800</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

III-Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Name of the Subject</th>
<th>Periods/Week</th>
<th>Max. Marks</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTLV3.1</td>
<td>Elective – V System Modeling and Simulation/EMI/EMC/Hardware Software Co Design</td>
<td>3 -</td>
<td>70 30 100 3</td>
<td></td>
</tr>
<tr>
<td>MTLV3.2</td>
<td>Open Elective Cellular & Mobile Communications Business Analytics Industrial Safety Operational Research Cost Management of Engineering Projects</td>
<td>3 -</td>
<td>70 30 100 3</td>
<td></td>
</tr>
<tr>
<td>MTLV3.3</td>
<td>Dissertation- I / Industrial Project</td>
<td>- -</td>
<td>100 -- 100 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 -</td>
<td>240 60 300 16</td>
<td></td>
</tr>
</tbody>
</table>

IV-Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Name of the Subject</th>
<th>Periods/Week</th>
<th>Max. Marks</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTLV4.1</td>
<td>Dissertation-II</td>
<td>- -</td>
<td>100 - 100 16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- -</td>
<td>100 - 100 16</td>
<td></td>
</tr>
</tbody>
</table>

Audit Course 1 & 2

1. English for Research Paper Writing
2. Disaster Management
3. Sanskrit for Technical Knowledge
4. Value Education
5. Constitution of India
6. Pedagogy Studies
7. Stress Management by Yoga
8. Personality Development through Life Enlightenment Skills
PROGRAMME: B.Tech (Electronics and Communication Engineering)

Programme Specific Outcomes (PSOs)

The Graduate of ECE will be able to:

<table>
<thead>
<tr>
<th>PSO</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSO-1</td>
<td>Graduates will be able to apply fundamental knowledge of Electronics and Communication Engineering to identify, investigate and solve various real-life problems in the field of Electronics.</td>
</tr>
<tr>
<td>PSO-2</td>
<td>Graduates will be able to design and develop systems in the emerging electronics and communication allied disciplines to meet out the industry challenges.</td>
</tr>
<tr>
<td>PSO-3</td>
<td>Graduates will be able to demonstrate the leadership qualities and strive for the betterment of organization, environment and society with professional and ethical responsibilities.</td>
</tr>
</tbody>
</table>

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

The Graduates of ECE will be able to:

1. To provide an in-depth knowledge in the fundamental and advanced areas of electronics and communication engineering and there by excel in professional career and/or higher education.

2. To train students in the software/hardware design of electronics and communication systems and can promote the development of research activity as well as innovation and entrepreneurship that caters to the need of Industry and Society.

3. To develop technical skill set for solving real life problems.

4. To develop qualities like creativity, leadership, team work, and professional ethics for contributing towards the growth and development of society.

5. To inculcate in students professional and ethical attitude, and an ability to relate engineering issues to broader social context.

PROGRAMME OUTCOMES (POs)

<table>
<thead>
<tr>
<th>Program Outcomes</th>
<th>ECE Graduates will be able to</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1 Engineering knowledge</td>
<td>Apply the knowledge of mathematics, science, engineering fundamentals to real time electronics and communication problems</td>
</tr>
<tr>
<td>PO</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>PO2</td>
<td>Problem analysis</td>
</tr>
<tr>
<td>PO3</td>
<td>Design/development of solutions</td>
</tr>
<tr>
<td>PO4</td>
<td>Conduct investigations of complex problems</td>
</tr>
<tr>
<td>PO5</td>
<td>Modern tool usage</td>
</tr>
<tr>
<td>PO6</td>
<td>The engineer and society</td>
</tr>
<tr>
<td>PO7</td>
<td>Environment and sustainability</td>
</tr>
<tr>
<td>PO8</td>
<td>Ethics</td>
</tr>
<tr>
<td>PO9</td>
<td>Individual and team work</td>
</tr>
<tr>
<td>PO10</td>
<td>Communication</td>
</tr>
<tr>
<td>PO11</td>
<td>Project management and finance</td>
</tr>
<tr>
<td>PO12</td>
<td>Life-long learning</td>
</tr>
</tbody>
</table>
PROGRAMME: 2

PROGRAMME: B.Tech + M.Tech (Electronics and Communication Engineering)

Programme Specific Outcomes (PSOs)

The Graduate of ECE will be able to:

<table>
<thead>
<tr>
<th>PSO</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSO-1</td>
<td>Graduates will be able to apply fundamental knowledge of Electronics and Communication Engineering to identify, investigate and solve various real-life problems in the field of Electronics.</td>
</tr>
<tr>
<td>PSO-2</td>
<td>Graduates will be able to design and develop systems in the emerging electronics and communication allied disciplines to meet out the industry challenges.</td>
</tr>
<tr>
<td>PSO-3</td>
<td>Graduates will be able to demonstrate the leadership qualities and strive for the betterment of organization, environment and society with professional and ethical responsibilities.</td>
</tr>
</tbody>
</table>

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

The Graduates of ECE will be able to:

1. To provide an in-depth knowledge in the fundamental and advanced areas of electronics and communication engineering and there by excel in professional career and/or higher education.

2. To train students in the software/hardware design of electronics and communication systems and can promote the development of research activity as well as innovation and entrepreneurship that caters to the need of Industry and Society.

3. To develop technical skill set for solving real life problems.

4. To develop qualities like creativity, leadership, team work, and professional ethics for contributing towards the growth and development of society.

5. To inculcate in students professional and ethical attitude, and an ability to relate engineering issues to broader social context.

PROGRAMME OUTCOMES (POs)

<table>
<thead>
<tr>
<th>Program Outcomes</th>
<th>ECE Graduates will be able to</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1 Engineering knowledge</td>
<td>Apply the knowledge of mathematics, science, engineering fundamentals to real time electronics and communication problems.</td>
</tr>
<tr>
<td>PO2 Problem analysis</td>
<td>Provide solutions for ECE problems by Identify, formulate, review literature, analyze, designing and conducting experiments, interpreting and reporting the results.</td>
</tr>
<tr>
<td>PO</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>PO3</td>
<td>Design/development of solutions</td>
</tr>
<tr>
<td>PO4</td>
<td>Conduct investigations of complex problems</td>
</tr>
<tr>
<td>PO5</td>
<td>Modern tool usage</td>
</tr>
<tr>
<td>PO6</td>
<td>The engineer and society</td>
</tr>
<tr>
<td>PO7</td>
<td>Environment and sustainability</td>
</tr>
<tr>
<td>PO8</td>
<td>Ethics</td>
</tr>
<tr>
<td>PO9</td>
<td>Individual and team work</td>
</tr>
<tr>
<td>PO10</td>
<td>Communication</td>
</tr>
<tr>
<td>PO11</td>
<td>Project management and finance</td>
</tr>
<tr>
<td>PO12</td>
<td>Life-long learning</td>
</tr>
</tbody>
</table>
PROGRAMME: M.Tech (Electronic Instrumentation)

Programme Specific Outcomes (PSOs)

The Post Graduate of EI will be able to:

<table>
<thead>
<tr>
<th>PSO-1</th>
<th>Analyze specific problems relevant to Electronic Instrumentation by applying the knowledge of basic sciences, Instrumentation fundamentals and advancements to solve technical problems.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSO-2</td>
<td>Electronic Instrumentation Engineers, including supportive and leadership roles in multidisciplinary domain and Design of electronic devices, software and hardware using the significant analytical knowledge in instrumentation by applying modern tools.</td>
</tr>
<tr>
<td>PSO-3</td>
<td>Apply and transfer interdisciplinary systems and Engineering approaches to the various areas like communication etc.</td>
</tr>
</tbody>
</table>

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

The Post Graduates of EI will be able to:

1. Identify and apply appropriate experimental and analytical skills to solve real world problems in Electronic Instrumentation field to create innovative products and systems.
2. Develop technical skills and apply appropriate techniques to formulate and analyze engineering problems in Instrumentation and Process Control.
3. Pursue career in research in multidisciplinary areas of signal processing, image processing and instrumentation domain through self-learning and self-directed on futuristic cutting-edge technologies.
4. Analyze technical problems and develop feasible, optimal, environmentally and socially acceptable solutions by applying research skills, technological knowledge and modern tools while working individually and in teams.
5. Students will be able to function professionally in rapidly changing world due to advances in electronics and related technologies in order to contribute to the needs of the society.

PROGRAMME OUTCOMES (POs)

<table>
<thead>
<tr>
<th>Program Outcomes</th>
<th>EI Post Graduates will be able to</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1 Engineering knowledge</td>
<td>Acquire in depth knowledge in the domain of Electronic Instrumentation Engineering.</td>
</tr>
<tr>
<td>PO2</td>
<td>Problem analysis</td>
</tr>
<tr>
<td>-----</td>
<td>------------------</td>
</tr>
<tr>
<td>PO3</td>
<td>Design/development of solutions</td>
</tr>
<tr>
<td>PO4</td>
<td>Conduct investigations of complex problems</td>
</tr>
<tr>
<td>PO5</td>
<td>Modern tool usage</td>
</tr>
<tr>
<td>PO6</td>
<td>The engineer and society</td>
</tr>
<tr>
<td>PO7</td>
<td>Environment and sustainability</td>
</tr>
<tr>
<td>PO8</td>
<td>Ethics</td>
</tr>
<tr>
<td>PO9</td>
<td>Individual and team work</td>
</tr>
<tr>
<td>PO10</td>
<td>Communication</td>
</tr>
<tr>
<td>PO11</td>
<td>Project management and finance</td>
</tr>
<tr>
<td>PO12</td>
<td>Life-long learning</td>
</tr>
</tbody>
</table>
PROGRAMME: M.Tech (Radar and Microwave)

Programme Specific Outcomes (PSOs)

The Post Graduate of R&M will be able to:

<table>
<thead>
<tr>
<th>PSO-1</th>
<th>To analyze, design and develop solutions for the real time problems and to apply the technical knowledge for developing quality products for Radar and Microwave industry.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSO-2</td>
<td>To adapt to emerging information and communication technologies and to develop innovative ideas and solutions in Radar and Microwave.</td>
</tr>
<tr>
<td>PSO-3</td>
<td>To design Radar and Microwave containing devices, software, and hardware by applying relevant modern tools.</td>
</tr>
</tbody>
</table>

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

The Post Graduates of R&M will be able to:

1. Work in educational, R&D institutes, industry, and as an entrepreneur in Radar & Microwave.

2. Pursue their doctoral studies and research in institutes of high repute in India & abroad and develop independent and lifelong learning skills for continuous professional development.

3. Analyze technical problems and develop feasible, optimal, environmentally, and socially acceptable solutions by applying research skills, technical knowledge, and modern tools while working individually and in teams.

4. To inculcate the culture of research-oriented projects in the Radar and Microwave field.

5. Demonstrate an ability to communicate effectively and practice professional ethics and Social responsibility in their career.
PROGRAMME OUTCOMES (POs)

<table>
<thead>
<tr>
<th>Program Outcomes</th>
<th>R&M Post Graduates will be able to</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1 Engineering knowledge</td>
<td>Acquire in-depth knowledge of RF and Microwave communication with an ability to evaluate, analyze and Synthesize complex problems.</td>
</tr>
<tr>
<td>PO2 Problem analysis</td>
<td>Conceptualize and solve engineering problems, to arrive at optimal solutions, considering public health and safety, societal and environmental factors.</td>
</tr>
<tr>
<td>PO3 Design/development of solutions</td>
<td>Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.</td>
</tr>
<tr>
<td>PO4 Conduct investigations of complex problems</td>
<td>Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.</td>
</tr>
<tr>
<td>PO5 Modern tool usage</td>
<td>Create, select and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.</td>
</tr>
<tr>
<td>PO6 The engineer and society</td>
<td>Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.</td>
</tr>
<tr>
<td>PO7 Environment and sustainability</td>
<td>Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.</td>
</tr>
<tr>
<td>PO8 Ethics</td>
<td>Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.</td>
</tr>
<tr>
<td>PO9 Individual and team work</td>
<td>Function effectively as an individual, and as a number or leader in diverse teams and in multidisciplinary settings.</td>
</tr>
<tr>
<td>PO10</td>
<td>Communication</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>PO11</td>
<td>Project management and finance</td>
</tr>
<tr>
<td>PO12</td>
<td>Life-long learning</td>
</tr>
</tbody>
</table>
PROGRAMME: 5

PROGRAMME: M.Tech (VLSI)

Programme Specific Outcomes (PSOs)

The Post Graduate of VLSI will be able to:

<table>
<thead>
<tr>
<th>PSO-1</th>
<th>An ability to understand the concepts of VLSI and to master the latest tools and techniques used in the field of research and industry.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSO-2</td>
<td>To adapt to emerging information and communication technologies and to develop innovative ideas and solutions in VLSI.</td>
</tr>
<tr>
<td>PSO-3</td>
<td>An understanding of social awareness & environmental wisdom along with ethical responsibility to achieve a successful career and to sustain passion and zeal for real world applications.</td>
</tr>
</tbody>
</table>

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

The Post Graduates of VLSI will be able to:

1. Identify and apply appropriate experimental and analytical skills to solve real world problems in VLSI to create innovative products and systems.

2. Pursue their doctoral studies and research in institutes of high repute in India & abroad and develop independent and lifelong learning skills for continuous professional development.

3. Students will be able to function professionally in rapidly changing world due to the advances in VLSI and related technologies in order to contribute to the needs of the society.

4. Develop an ability to analyze the problem, understand the technical requirements, design and deliver engineering solutions and create effective product design.

5. To inculcate the culture of research-oriented projects in VLSI.

PROGRAMME OUTCOMES (POs)

<table>
<thead>
<tr>
<th>Program Outcomes</th>
<th>VLSI Post Graduates will be able to</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1 Engineering knowledge</td>
<td>Apply the knowledge of mathematics, science, engineering fundamentals to real time electronics and communication problems.</td>
</tr>
<tr>
<td>PO</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>PO2</td>
<td>Problem analysis</td>
</tr>
<tr>
<td>PO3</td>
<td>Design/development of solutions</td>
</tr>
<tr>
<td>PO4</td>
<td>Conduct investigations of complex problems</td>
</tr>
<tr>
<td>PO5</td>
<td>Modern tool usage</td>
</tr>
<tr>
<td>PO6</td>
<td>The engineer and society</td>
</tr>
<tr>
<td>PO7</td>
<td>Environment and sustainability</td>
</tr>
<tr>
<td>PO8</td>
<td>Ethics</td>
</tr>
<tr>
<td>PO9</td>
<td>Individual and team work</td>
</tr>
<tr>
<td>PO10</td>
<td>Communication</td>
</tr>
<tr>
<td>PO11</td>
<td>Project management and finance</td>
</tr>
<tr>
<td>PO12</td>
<td>Life-long learning</td>
</tr>
</tbody>
</table>
PROGRAMME: 6

PROGRAMME: M.Tech (BioMedical Engineering)

Programme Specific Outcomes (PSOs)

The Post Graduate of BME will be able to:

<table>
<thead>
<tr>
<th>PSO-1</th>
<th>Analyze specific problems relevant to BioMedical Engineering by applying the knowledge of basic sciences, BioMedical Instrumentation fundamentals and advancements to solve technical problems.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSO-2</td>
<td>To adapt emerging technologies and to develop innovative ideas and solutions in Biomedical Engineering.</td>
</tr>
<tr>
<td>PSO-3</td>
<td>An ability to make use of acquired technical knowledge to get employed in the field of BioMedical.</td>
</tr>
</tbody>
</table>

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

The Post Graduates of BME will be able to:

1. Identify and apply appropriate experimental and analytical skills to solve real world problems in the field of BioMedical Engineering to create innovative products and systems.

2. Develop technical skills and apply appropriate techniques to formulate and analyze engineering problems in BioMedical Instrumentation.

3. Pursue career in research in multidisciplinary areas of Biomedical signal processing, Biomedical image processing and instrumentation domain.

4. Analyze technical problems and develop feasible, optimal, environmentally and socially acceptable solutions by applying research skills, technological knowledge and modern tools while working individually and in teams.

5. Students will be able to function professionally in rapidly changing world due to advances in Biomedical and related technologies in order to contribute to the needs of the society.

PROGRAMME OUTCOMES (POs)

<table>
<thead>
<tr>
<th>Program Outcomes</th>
<th>BME Post Graduates will be able to</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1 Engineering knowledge</td>
<td>Acquire in depth knowledge in the domain of BioMedical Engineering.</td>
</tr>
<tr>
<td>PO2 Problem analysis</td>
<td>Understand various BioMedical strategies and their applications for various types of systems.</td>
</tr>
<tr>
<td>PO3</td>
<td>Design/development of solutions</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>PO4</td>
<td>Conduct investigations of complex problems</td>
</tr>
<tr>
<td>PO5</td>
<td>Modern tool usage</td>
</tr>
<tr>
<td>PO6</td>
<td>The engineer and society</td>
</tr>
<tr>
<td>PO7</td>
<td>Environment and sustainability</td>
</tr>
<tr>
<td>PO8</td>
<td>Ethics</td>
</tr>
<tr>
<td>PO9</td>
<td>Individual and team work</td>
</tr>
<tr>
<td>PO10</td>
<td>Communication</td>
</tr>
<tr>
<td>PO11</td>
<td>Project management and finance</td>
</tr>
<tr>
<td>PO12</td>
<td>Life-long learning</td>
</tr>
</tbody>
</table>
M.TECH VLSI
Scheme of Instruction and Examination with effect from 2019-2020 admitted batch onwards
Under AICTE Model Curriculum
M.Tech (VLSI), B.Tech+M.Tech(5/6 and 6/6), Two Year (Four Semesters)

Scheme to be valid with effect from the admitted batch of 2019 – 2020

I-Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Name of the Subject</th>
<th>Periods/Week</th>
<th>Max. Marks</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTVL1.1</td>
<td>VLSI Design Techniques</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>MTVL1.2</td>
<td>Analog IC design</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>MTVL1.3</td>
<td>Elective – I (Digital Signal Processing/ Application Specific Integrated Circuit(ASIC)/ Hardware Software Co Design/ Advanced Microprocessors & Microcontrollers)</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>MTVL1.4</td>
<td>Elective – II (CPLD and FPGA Architecture & Applications / VHDL Modelling of Digital Systems/EDA Tools)</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>MTVL1.5</td>
<td>Research Methodology & IPR</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>MTVL1.6</td>
<td>Audit Course</td>
<td>3</td>
<td>-</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>MTVL1.7</td>
<td>HDL Programming LAB-I</td>
<td>-</td>
<td>3</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>MTVL1.8</td>
<td>Analog IC Design LAB</td>
<td>-</td>
<td>3</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>6</td>
<td>350</td>
<td>450</td>
</tr>
</tbody>
</table>

II-Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Name of the Subject</th>
<th>Periods/Week</th>
<th>Max. Marks</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTVL2.1</td>
<td>Digital System Design</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>MTVL2.2</td>
<td>Algorithms for VLSI design automation</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>MTVL2.3</td>
<td>Elective – III (Low Power VLSI Design/ Wireless Communication and networks/ RF& Microwave Integrate Circuits)</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>MTVL2.4</td>
<td>Elective – IV (Microcontroller and Embedded Systems/ Digital)</td>
<td>3</td>
<td>70</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>Code</td>
<td>Name of the Subject</td>
<td>Periods/Week</td>
<td>Max. Marks</td>
<td>Total Credits</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>--------------</td>
<td>------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Systems Testing & Testable Design/ DSP Processors and Architectures)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTVL2.5</td>
<td>Audit Course</td>
<td>3</td>
<td>-</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>MTVL2.6</td>
<td>HDL Programming LAB-II</td>
<td>-</td>
<td>3</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>MTVL2.7</td>
<td>Mixed Signal Simulation LAB</td>
<td>-</td>
<td>3</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>MTVL2.8</td>
<td>Mini Project with Seminar</td>
<td>-</td>
<td>3</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>9</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>520</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>800</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>III-Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MTVL3.1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MTVL3.2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MTVL3.3</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IV-Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MTVL4.1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Audit Course 1 & 2

1. English for Research Paper Writing
2. Disaster Management
3. Sanskrit for Technical Knowledge
4. Value Education
5. Constitution of India
6. Pedagogy Studies
7. Stress Management by Yoga
8. Personality Development through Life Enlightenment Skills
VLSI DESIGN TECHNIQUES

Subject Code : MTVL – 1.1
I – Semester

Credits : 3
Max. Marks : 70
Sessionals : 30

Course educational Objectives: The objectives of this course is

CEO 1: Attain mastery in applying VLSI concepts to Engineering problems so as to meet the need of the industry, teaching, higher education or research.
CEO 2: To understand other process steps like etching, implantation and metallization and their implications.
CEO 3: To understand the semiconductor materials, devices and technology historical evaluations
CEO 4: To explain the oxidization process and quality measures in the fabrication

Course Outcomes: At the completion of the course the student will be able to

CO 1: Identify the various design limits material used for fabrication.
CO 2: Describe the Performance of technology scaling
CO 3: Understand the complexities involved in the integrated circuits
CO 4: Apply principles to Identify and Analyze the various steps for the fabrication of various components
CO 5: Assess the various reliability issues in VLSI technology

UNIT - I
INTRODUCTION: Basic Principle of MOS Transistor, Introduction to Large Signal MOS Models (Long Channel) For Digital Design.
Learning Outcomes: At the end of the unit, the student will be able to

LO 1: Explain basic principle of Mos transistor
LO 2: Understand large signal MOS Models for digital design

UNIT – II
THE MOS INVERTER, LAYOUT AND SIMULATION: Inverter principle, Depletion and enhancement load inverters, the basic CMOS inverter, transfer characteristics, logic threshold, Noise margins, and Dynamic behavior, Propagation Delay, Power Consumption. MOS SPICE Model, Device Characterization, Circuit Characterization, Interconnects and Simulation. MOS Device Layout, Transistor Layout, Inverter Layout, CMOS Digital Circuits Layout & Simulation.
Learning Outcomes: At the end of the unit, the student will be able to

LO 1: Explain basic principle of inverter
LO 2: Understand transfer characteristics of CMOS inverter
LO 3: Observe simulation of CMOS digital circuits

UNIT- III
COMBINATIONAL MOS LOGIC DESIGN: Static MOS design; Complementary MOS, Rationed logic, Pass Transistor logic, complex logic circuits, Dynamic MOS Design, Dynamic Logic Families and Performances.
Learning Outcomes: At the end of the unit, the student will be able to
LO 1: design static MOS
LO 2: design complex logic circuits
LO 3: observe performances of dynamic logic families.

UNIT –IV
SEQUENTIAL MOS LOGIC DESIGN: Static Latches, Flip Flops and Registers, Dynamic Latches and Registers, CMOS Schmitt trigger, Monostable Sequential Circuits, Astable Circuits, Memory Design, ROM and RAM Cells Design.
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: design of latches and flipflops.
 LO 2: design of sequential circuits.
 LO 3: design of various memory cell designs.

UNIT –V
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: understand interconnect delays and cross talks.
 LO 2: explain clock distribution.
 LO 3: understand low power design.

UNIT–VI
BICMOS LOGIC CIRCUITS: Introduction, BJT Structure and Operation, Basic BiCMOS Circuit behavior, Switching Delay in BiCMOS Logic Circuits, BiCMOS Applications.
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: explain BJT structures
 LO 2: understand basic BICMOS circuit
 LO 3: explain applications of BICMOS.

TEXT BOOKS:

REFERENCE:
1. Weste and Eshraghian, “Principles of CMOS VLSI design” Addison-Wesley, 2002
Course educational Objectives: The objectives of this course is

CEO 1: To understand the construction, operation and mathematical models of MOSFETs.
CEO 2: To study and analyze different current mirrors used to bias IC amplifiers.
CEO 3: To understand the frequency response of amplifier designed in integrated circuits.
CEO 4: To understand different specifications and topologies related to operational amplifiers.

Course Outcomes: At the completion of the course the student will be able to

CO 1: acquire knowledge of device physics related to MOSFET
CO 2: acquire knowledge of amplifier design with the use of proper biasing techniques
CO 3: identify appropriate circuit topology for given gain, input impedance, output impedance and bandwidth requirements
CO 4: design feedback circuits to meet the given gain error, bandwidth, input and output impedance requirements
CO 5: acquire the knowledge of different op-amp topologies and to design op-amps for the given specifications

UNIT- I
Learning Outcomes: At the end of the unit, the student will be able to

LO 1: explain MOS Transistor and BJT.
LO 2: understand the advanced MOS Modeling
LO 3: analyze the SPICE modeling parameters.

UNIT-II
CURRENT MIRRORS AND SINGLE STAGE AMPLIFIERS: Simple CMOS CurrentMirror, Common Source, Source-Follower, Common Gate Amplifier, High-Output-Impedance Current Mirrors and Bipolar Gain Stages, Frequency Response.
Learning Outcomes: At the end of the unit, the student will be able to

LO 1: explain CMOS current mirrors.
LO 2: understand CS,CG amplifiers
LO 3: observe frequency response of current mirrors.

UNIT –III
OPERATIONAL AMPLIFIER DESIGN AND COMPENSATION: Two Stage CMOS Operational Amplifier, Feedback and Operational Amplifier Compensation, Comparator, Charge Injection Error, Latched Comparator and Bi CMOS Comparators.
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: explain feedback and OPAMP compensation.
 LO 2: understand charge injection error.
 LO 3: understand BICMOS comparators

UNIT – IV
ADVANCED CURRENT MIRRORS AND OPERATIONAL AMPLIFIERS:
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: understand advanced Current mirror
 LO 2: understand current mirror OPAMP
 LO 3: explain feedback circuits of OPAMP.

UNIT – V
SAMPLE AND HOLD, SWITCHED-CAPACITOR CIRCUITS: MOS Sample-and-Hold Basics, CMOS Sample and Hold Circuits, Bipolar and BiCMOS Sample and Holds. Basic Operation and Analysis, First-Order and Biquad Filters, Charge Injection, Switched-Capacitor Gain Circuits, Correlated Double-Sampling Techniques, Other Switched-Capacitor circuits.
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: understand basics of mos sample and hold.
 LO 2: analysis of biquad filters
 LO 3: explain various gain circuits and techniques.

UNIT – VI
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: explain A/D & D/A converter.
 LO 2: understand various types of converters.
 LO 3: explain sampling techniques.

TEXT BOOKS:

REFERENCE:
Course educational Objectives: The objectives of this course is

CEO 1: designed to give students the required knowledge for DFT, FFT, Z Transforms and its computation and understand the design techniques for digital filters
CEO 2: Thorough understanding of frequency domain analysis of discrete time signals
CEO 3: Ability to design & analyze DSP systems like FIR and IIR Filter etc

Course Outcomes: At the completion of the course the student will be able to

CO 1: Analyze discrete-time signals and systems in various domains
CO 2: Design and implement filters using fixed point arithmetic targeted for embedded platforms
CO 3: Acquire the basics of multi rate digital signal processing.
CO 4: Comprehend the DFTs and FFTs
CO 5: Comprehend the Finite word length effects in Fixed point DSP Systems.

UNIT-I
ADVANCED DIGITAL FILTER DESIGN TECHNIQUES: Multiple Band Optimal FIR Filters, Design of Filters with Simultaneous Constraints in Time and Frequency Response, Optimization Methods for Designing IR Filters, Comparison of Optimum FIR Filters and Delay Equalized Elliptic Filters.
Learning Outcomes: At the end of the unit, the student will be able to
LO 1: design FIR filters
LO 2: Design IIR filters
LO 3: understand the comparison of different types of filters

UNIT-II
Learning Outcomes: At the end of the unit, the student will be able to
LO 1: understand the time domain characterization.
LO 2: understand the frequency domain characterization.
LO 3: explain filters in sampling rate alteration

UNIT-III
Learning Outcomes: At the end of the unit, the student will be able to
LO 1: explain the applications of digital filters
LO 2: understand forward and backward linear prediction
LO 3: explain how to predict different filters
UNIT-IV
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: explain different types of algorithms
 LO 2: explain differences between types of algorithms.
 LO 3: understand computations of the DFT

UNIT-V
SIGNAL PROCESSING HARDWARE AND FFT ARCHITECTURES AND PROCESSORS:
Multipliers, Dividers, Different Forms of FIR Hardware, Multiplexing, DTTR, TDM to FDM Translator, Realization of Frequency Synthesizer. FFT Hardware Realization, Different FFT Architectures, Special FFT Processors, Convolves, Lincoln Laboratory FDP and the Compatible Computer Configurations.
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: understand different forms of FIR hardware.
 LO 2: understand realization of frequency synthesizer.
 LO 3: understand various computer configurations.

UNIT-VI
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: understand the model of speech productions
 LO 2: explain applications of DSP
 LO 3: explain linear prediction of speech

TEXT BOOKS:

REFERENCE:
Elective-I

APPLICATION SPECIFIC INTEGRATED CIRCUITS (ASIC)

Credits : 3
Subject Code : MTVL – 1.3
I – Semester
Max. Marks : 70
Sessionals : 30

Course educational Objectives: The objectives of this course is

CEO 1: To prepare the student to be an entry-level industrial standard ASIC
CEO 2: To give the student an understanding of issues and tools related to ASIC
CEO 3: To give the student an understanding of basics of System on Chip and Platform based design.

Course Outcomes: At the completion of the course the student will be able to

CO 1: Architect ASIC library design
CO 2: Develop programmable ASIC logic cells
CO 3: Design I/O cells and interconnects
CO 4: Identify new developments in SOC and low power design.
CO 5: Design cell design

UNIT- I
Introduction to ASICs – Types of ASICs, Design flow, Economics of ASICs, ASIC Cell Libraries, CMOS Logic, CMOS Design Rules, Logic Cells, I/O Cells, Cell Compilers.
Learning Outcomes: At the end of the unit, the student will be able to
LO 1: Understand different types of ASICs
LO 2: Explain CMOS Design Rules

UNIT- II
ASIC Library Design – Transistors as resistors, Transistor Parasitic Capacitance, Logical Effort, Cell Design, Programmable ASICs, Programmable ASIC Logic Cells, Programmable ASIC I/O Cells, Programmable ASIC Interconnect, Programmable ASIC Design Software.
Learning Outcomes: At the end of the unit, the student will be able to
LO 1: Understand ASIC Library design
LO 2: Explain ASIC design Software

UNIT -III
Learning Outcomes: At the end of the unit, the student will be able to
LO 1: Understand overview of VHDL and VERilog
LO 2: Explain the simulation of ASIC
UNIT- IV

Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: explain CMOS system core studies
 LO 2: understand layouts of CMOS system

UNIT - V
Practical Realities and Ground Rules: Further Thoughts on Floor Plans/Layout, Floor Plan Layout of The Four Bit Processors, Input/output (I/O) Pads, “Real estate”, Further Thoughts on System Delays, Ground Rules for Successful Design, Scaling of MOS Circuits.

Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: understand practical realities and ground rules
 LO 2: explain ground rules of successful design.

TEXTBOOK:

REFERENCES:

Elective-I

ADVANCED MICROPROCESSORS AND MICROCONTROLLERS

Credits : 3

Subject Code: MTVL – 1.3
I – Semester

Course educational Objectives: The objectives of this course is

CEO 1: Know the internal organization, addressing modes and instruction sets of 8086 processor
CEO 2: Know the various functional units of 8051 microcontroller
CEO 3: Understand embedded C and assembly language program by using 8051 Instruction sets and addressing modes.
CEO 4: Understand microcontroller based system design for various applications.

Course Outcomes: At the completion of the course the student will be able to

CO 1: Develop an embedded C and ALP in 8051 microcontroller using the internal functional blocks for the given specification
CO 2: Explain microcontroller application and basic architecture of PIC, ARM and ATMEGA processors
CO 3: Describe the architecture and functional block of 8051 microcontroller
CO 4: Describe the architecture and functional block of 8051 microcontroller
CO 5: Explain the internal organization, addressing modes and instruction sets of 8086 processor

Unit – I:

Learning Outcomes: At the end of the unit, the student will be able to

LO 1: Explain addressing modes of 8086
LO 2: Understand the architecture of 8086

Unit – II:
Interrupts of 8086 / 8088 and DOS Interrupt 21h functions. Interfacing A/D converters to the PC and data acquisition. Interfacing D/A converters and waveform generation.

Learning Outcomes: At the end of the unit, the student will be able to

LO 1: Explain different types of interrupts
LO 2: Understand interfacing of A/D converters

Unit – III:
80286, 80386, 80486 and Pentium Microprocessors. Motorola 68000, 68020 and 68030 Microprocessors.

Learning Outcomes: At the end of the unit, the student will be able to
LO 1: explain comparison between different types of processors
LO 2: understand series of Motorola

Unit –IV: General Microcontrollers
Introduction to the 8051 and 8052 Microcontrollers, features, architectures, memory organization, addressing modes, instruction set, assembly programming, software development tools, parallel I/O ports, interrupts, timers/counters, serial communication, data and control transfer operations, serial data transmissions, programming and interfacing using 8051.

Learning Outcomes: At the end of the unit, the student will be able to
LO 1: understand the architecture of 8051
LO 2: explain interrupts of 8051

Unit –V: Atmel Microcontrollers
Introduction to Atmel microcontrollers (89CXX and 89C20XX), Architecture overview of Atmel 89C51, pin description of Atmel microcontrollers, using flash memory devices, Atmel 89CXX and Atmel 89C20XX, Applications of MCS-51 and Atmel 89C51 and 89C2051 microcontrollers.

Learning Outcomes: At the end of the unit, the student will be able to
LO 1: understand overview of ATMEL microcontroller
LO 2: explain the pins of 89c51

Unit –VI: PIC Microcontrollers
An introduction to PIC microcontrollers, PIC 8 series and PIC 16 series microcontrollers and PIC family of microcontrollers (16C8X/7X, 16F84A, 12F50X and 16F8XX), architecture, instruction set, programming using assembly language and C languages of the PIC microcontrollers, interfacing PIC Microcontrollers to the other devices, applications of PIC microcontrollers.

Learning Outcomes: At the end of the unit, the student will be able to
LO 1: understand overview of PIC
LO 2: explain assembly language and c Languages of PIC

Text Books:

References:
4. The 8051 Microcontroller Architecture, Programming and Applications by Kenneth Ayala, Thomson Publishers
Elective-II

CPLD AND FPGA ARCHITECTURE AND APPLICATIONS

Credits : 3
Max. Marks : 70
Sessionals : 30

Subject Code : MTVL – 1.4
I – Semester

Course educational Objectives: The objectives of this course is

CEO 1: Familiarization of various complex programmable Logic devices of different families.
CEO 2: To study Field programmable gate arrays and realization techniques
CEO 3: To study different case studies using one hot design methods.

Course Outcomes: At the completion of the course the student will be able to

CO 1: Acquire Knowledge about various architectures and device technologies of PLD’s
CO 2: Comprehend FPGA Architectures.
CO 3: Describe FSM and different FSM techniques like petrinets & different case studies.
CO 4: Comprehends FSM Architectures and their applications.
CO 5: Analyze System level Design and their application for Combinational and Sequential Circuits.

UNIT – I
Learning Outcomes: At the end of the unit, the student will be able to

LO 1: explain different types of PLDS
LO 2: understand the applications of PLDS

UNIT-II
CPLDs: Complex Programmable Logic Devices: Altera series – Max 5000/7000 series and Altera FLEX logic- 10000 series CPLD, AMD’s- CPLD (Mach 1 to 5), Cypress FLASH 370 Device technology, Lattice PLSI’s architectures – 3000 series – Speed performance and in system programmability.
Learning Outcomes: At the end of the unit, the student will be able to

LO 1: explain different types of CPLDS
LO 2: understand speed performance and in system programmability

UNIT – III
FPGAs: Field Programmable Gate Arrays- Logic blocks, routing architecture, design flow, technology mapping for FPGAs, Case studies Xilinx XC4000 & ALTERA’s FLEX 8000/10000 FPGAs: AT &T ORCA’s (Optimized Reconfigurable Cell Array): ACTEL’s ACT-1,2,3 and their speed performance.
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: Explain design flow of FPGA
 LO 2: understand case studies of FPGA

UNIT-IV
Finite State Machines (FSM): Top Down Design, State Transition Table, State assignments for FPGAs, Realization of state machine charts using PAL, Alternative realization for state machine charts using microprogramming, linked state machine, encoded state machine. Architectures Centered around non registered PLDs, Design of state machines centered around shift registers, One Hot state machine, Petri nets for state machines-Basic concepts and properties, Finite State Machine-Case study.
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: explain state assignment of FSM
 LO 2: understand case studies of FSM

UNIT- VI
Design Methods and System Level Design: One –hot design method, Use of ASMs in one-hot design method, Applications of one hot design method, Extended Petri-nets for parallel controllers, Meta Stability, Synchronization, Complex design using shift registers, Controller, data path designing, Functional partition, Digital front end digital design tools for FPGAs & ASICs, System level design using mentor graphics EDA tool (FPGA Advantage), Design flow using CPLDs and FPGAs.
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: use of ASM in one hot design method
 LO 2: explain design tools for FPGA & ASIC

UNIT – VIII
Case studies: Design considerations using CPLDs and FPGAs of parallel adder cell, paralleladder sequential circuits, counters, multiplexers, parallel controllers.
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: explain case studies of CPLDS & FPGA
 LO 2: understand sequential circuits

TEXT BOOKS:

REFERENCES:
Elective-II
VHDL MODELLING OF DIGITAL SYSTEMS

Credits : 3
Max. Marks : 70
Sessionals : 30

Subject Code : MTVL – 1.4

Course educational Objectives: The objectives of this course is

CEO 1: To gain an in-depth understanding of VHDL and to realize different circuits using it both sequential and combinational.
CEO 2: To learn the concept of memories and how they are designed using VHDL.
CEO 3: To gain an understanding of applications of VHDL in PLDs and Field Programmable Logic Arrays (FPGAs).

Course Outcomes: At the completion of the course the student will be able to

CO 1: explain VHDL as a programming language.
CO 2: Design the combinational and sequential logic circuits using VHDL.
CO 3: Design Programmable logic devices (PLDs) and Networks of Arithmetic operations.
CO 4: Understanding of applications of VHDL in PLDs
CO 5: Gain proficiency with VHDL software package and utilize software package to solve problems on a wide range of digital logic circuits.

UNIT I
INTRODUCTION

Learning Outcomes: At the end of the unit, the student will be able to

LO 1: understand overview of CAD tools
LO 2: explain top down design with VHDL

UNIT II
BASIC CONCEPT IN VHDL

Learning Outcomes: At the end of the unit, the student will be able to

LO 1: explain basic concepts in VHDL
LO 2: understand library writing of primitives

UNIT III
DESIGN ORGANIZATION AND PARAMETERIZATION
Definition And Usage If Subprograms, Packaging Parts And Utilities, Design Parametrization, Design Configuration, Design Libraries, Utilities For High –Level Descriptions-Type Declaration And Usage, VHDL Operators, Subprogram Parameter Types And Overloading, Other Types And Type Related Issues, Predefined Attributes, User Defined Attributes, Packing Basic Utilities.

Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: explain design parametrization for HLL
 LO 2: understand user defined attributes

UNIT IV
DATA FLOW DESCRIPTION IN VHDL

Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: explain data flow circuit
 LO 2: understand sequential wait statements

UNIT V
CPU MODELLING FOR DESCRIPTION IN VHDL
Parwan CPU, Behavioral Description OfParawan, Bussing Structure, Data Flow Description Test Bench For The Parwan CPU. A More Realistic Parwan. Interface Design And Modeling, VHDL As A Modelling Language.

Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: explain different types of modelling in VHDL
 LO 2: understand PARWAN

TEXT BOOKS:

REFERENCE:

1. PERRY : VHDL, (3/E) Mcgraw Hill 10
Elective –II

ELECTRONIC DESIGN AUTOMATION TOOLS

Credits : 3

Subject Code : MTVL – 1.4

I – Semester

Course educational Objectives: The objectives of this course is

CEO 1: This Course gives an idea about the tools and techniques for integrated circuit design
CEO 2: This course deals with Functional design and verification, Frontend, Back-end IC design flow and tools, Mixed signal design flow for integrated circuit design.
CEO 3: Capability in Microelectronics design and Implementation using Electronic Design Automation (EDA) tools.

Course Outcomes: At the completion of the course the student will be able to

CO 1: Design hardware/software system models in a suitable system-level modeling language, such as SystemC.
CO 2: Use suitable heuristics to partition functional models into hardware and software components.
CO 3: Construct models for expressing functionalities of a system with appropriate models of computation and optimize such models for efficient simulation.
CO 4: Compare the complexity and efficiency of various algorithms for high-level synthesis from system models and design programs to implement such algorithms.
CO 5: Express semantics of various modeling languages using formal notations and techniques for expressing models of computation.

UNIT I

IMPORTANT CONCEPTS IN VERILOG:
Basics Of Verilog Language, Operators, Hierarchy, Procedures AndAssignments, Timing Controls And Delay, Tasks And Functions Control Statements, Logic-Gate Modeling, Modeling Delay, Altering Parameters, other Verilog Features.
Learning Outcomes: At the end of the unit, the student will be able to

LO 1: understand basics of Verilog language
LO 2: explain altering parameters

UNIT II

SYNTHESIS AND SIMULATION USING HDLS:
Learning Outcomes: At the end of the unit, the student will be able to

LO 1: understand VHDL and Logic synthesis
LO 2: explain synthesis and simulation model sim
UNIT III
TOOLS FOR CIRCUIT DESIGN AND SIMULATION USING PSPICE:
Pspice Models For Transistors, A/D & D/A Sample And Hold Circuits Etc, And Digital System Building Blocks, Design And Analysis Of Analog And Digital Circuits Using PSPICE.
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: understand PSPICE models for transistors
 LO 2: design analog and digital circuits using PSPICE

UNIT IV
AN OVER VIEW OF MIXED SIGNAL VLSI DESIGN:
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: explain mixed signal simulator configurations
 LO 2: explain up and down converters

UNIT V
TOOLS FOR PCB DESIGN AND LAYOUT:
An Overview Of High Speed PCB Design, Design Entry, Simulation And Layout Tools For PCB. Introduction To OrCAD PCB Design Tools.
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: explain overview of high speed PCB design
 LO 2: explain orcad PCB tools

TEXTBOOKS

REFERENCES
1. ORCAD: Technical Reference Manual ,OrCAD, USA.

RESEARCH METHODOLOGY AND IPR

Credits: 2
Subject Code: MTVL – 1.5 Exam Marks: 70
Semester-I Sessional: 30

Course educational Objectives: The objectives of this course is
CEO 1: To give an overview of the research methodology and explain the technique of defining a research problem
CEO 2: To explain the functions of the literature review in research
CEO 3: To explain carrying out a literature search, its review, developing theoretical and conceptual frameworks and writing a review
CEO 4: To explain various forms of the intellectual property, its relevance and business impact in the changing global business environment.

Course Outcomes: At the completion of the course the student will be able to

CO 1: Understand research problem formulation.
CO 2: Analyze research related information
CO 3: Follow research ethics
CO 4: Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasize the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.
CO 5: Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

Learning Outcomes: At the end of the unit, the student will be able to
LO 1: explain research problem
LO 2: understand errors in selecting research problem

Unit 2: Effective literature studies approaches, analysis Plagiarism, Research ethics,
Learning Outcomes: At the end of the unit, the student will be able to
LO 1: understand plagiarism
LO 2: explain research ethics

Unit 3: Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.
Learning Outcomes: At the end of the unit, the student will be able to
LO 1: understand technical writing
LO 2: explain format of research proposal

Learning Outcomes: At the end of the unit, the student will be able to
LO 1: understand patents, designs
LO 2: understand international scenario.

Learning Outcomes: At the end of the unit, the student will be able to
LO 1: understand patent rights
LO 2: understand geographical indications

Learning Outcomes: At the end of the unit, the student will be able to
LO 1: understand administration in patent systems
LO 2: explain case studies in IPR & IITs

REFERENCES:
2. Wayne Goddard and Stuart Melville, “Research Methodology: An Introduction”
AUDIT COURSE 1&2
ENGLISH FOR RESEARCH PAPER WRITING

Subject Code: MTVL – 1.6&2.5
Credits: 0

Semester-I&II
Sessional: 100

1. Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness.
3. Review of the Literature, Methods, Results, Discussion, Conclusions, the Final Check.
4. Key skills are needed when writing a Title, key skills are needed when writing an abstract, key kills are needed when writing an Introduction, skills needed when writing a Review of the Literature.
5. Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, and skills are needed when writing the Conclusions
6. Useful phrases, how to ensure paper is as good as it could possibly be the first-time Submission.

REFERENCES:
AUDIT COURSE 1&2
DISASTER MANAGEMENT

Subject Code: MTVL – 1.6&2.5 Credits: 0
Semester-I&II Sessional: 100

1 Introduction: Disaster: Definition, Factors And Significance; Difference Between Hazard And Disaster; Natural And Manmade Disasters: Difference, Nature, Types And Magnitude.

2 Repercussions Of Disasters And Hazards: Economic Damage, Loss Of Human And Animal Life, Destruction Of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

3 Disaster Prone Areas In India: Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics

4 Disaster Preparedness And Management Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

6 Disaster Mitigation Meaning, Concept And Strategies Of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation And Non-Structural Mitigation, Programs Of Disaster Mitigation In India.

REFERENCES:
2. Sahni, Pardeep Et.Al. (Eds.),” Disaster Mitigation Experiences And Reflections”, Prentice Hall
 Of India, New Delhi.

AUDIT COURSE 1&2
SANSKRIT FOR TECHNICAL KNOWLEDGE

Subject Code: MTVL – 1.6&2.5
Credits: 0
Semester-I&II
Sessional: 100

1 Alphabets in Sanskrit, Past/Present/Future Tense,Simple Sentences
2 Order
Introduction of roots
Technical information about Sanskrit Literature
3 Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

REFERENCES:
1. “Abhyaspustakam” – Dr.Vishwas, Samskrita-Bharti Publication, New Delhi
2. “Teach Yourself Sanskrit” PratamaDeeksha-VempatiKutumbshastri, Rashtriya Sanskrit Sansthnam, New Delhi Publication
AUDIT COURSE 1&2
VALUE EDUCATION

Subject Code: MTVL – 1.6&2.5
Credits: 0
Semester-I&II
Sessional: 100

1 Values and self-development – Social values and individual attitudes.
 Work ethics, Indian vision of humanism.
Moral and non- moral valuation. Standards and principles.
Value judgements
2 Importance of cultivation of values.
 Truthfulness, Cleanliness.
Honesty, Humanity. Power of faith, National Unity.
Patriotism. Love for nature, Discipline
3 Personality and Behavior Development - Soul and Scientific attitude.
 Positive Thinking. Integrity and discipline.
Punctuality, Love and Kindness.
Avoid fault Thinking.
Free from anger, Dignity of labour.
Universal brotherhood and religious tolerance.
True friendship.
Happiness Vs suffering, love for truth.
Aware of self-destructive habits.
Association and Cooperation.
Doing best for saving nature
4 Character and Competence – Holy books vs Blind faith.
Self-management and Good health.
Science of reincarnation.
Equality, Nonviolence, Humility, Role of Women.
All religions and same message.
Mind your Mind, Self-control.

REFERENCES:
AUDIT COURSE 1&2
CONSTITUTION OF INDIA

Subject Code: MTVL – 1.6&2.5
Credits: 0
Semester-I&II
Sessional: 100

1 History of Making of the Indian Constitution:
 History
 Drafting Committee, (Composition& Working)

2 Philosophy of the Indian Constitution:
 Preamble
 Salient Features

3 Contours of Constitutional Rights & Duties:
 Fundamental Rights
 Right to Equality
 Right to Freedom
 Right against Exploitation
 Right to Freedom of Religion
 Cultural and Educational Rights
 Right to Constitutional Remedies
 Directive Principles of State Policy
 Fundamental Duties.

4 Organs of Governance:
 Parliament
 Composition
 Qualifications and Disqualifications
 Powers and Functions
 Executive
 President
 Governor
 Council of Ministers
 Judiciary, Appointment and Transfer of Judges, Qualifications
Powers and Functions

5 Local Administration:
District’s Administration head: Role and Importance,
Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation.
Elected officials and their roles, CEO ZilaPachayat: Position and role.
Block level: Organizational Hierarchy (Different departments),
Village level: Role of Elected and Appointed officials,
Importance of grass root democracy

6 Election Commission:
Election Commission: Role and Functioning.
Chief Election Commissioner and Election Commissioners.
State Election Commission: Role and Functioning.
Institute and Bodies for the welfare of SC/ST/OBC and women.

REFERENCES:
1. The Constitution of India, 1950 (Bare Act), Government Publication.
Introduction and Methodology:
Aims and rationale, Policy background, Conceptual framework and terminology
Theories of learning, Curriculum, Teacher education.
Conceptual framework, Research questions.
Overview of methodology and Searching.

Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. Curriculum, Teacher education.

Evidence on the effectiveness of pedagogical practices
Methodology for the in depth stage: quality assessment of included studies.
How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?
Theory of change.
Strength and nature of the body of evidence for effective pedagogical practices.
Pedagogic theory and pedagogical approaches.
Teachers’ attitudes and beliefs and Pedagogic strategies.

Professional development: alignment with classroom practices and follow support
Peer support.
Support from the head teacher and the community.
Curriculum and assessment.
Barriers to learning: limited resources and large class sizes.

Research gaps and future directions
Research design
Contexts
Pedagogy
Teacher education
Curriculum and assessment
Dissemination and research impact.
REFERENCES:
AUDIT COURSE 1&2
STRESS MANAGEMENT BY YOGA

Subject Code: MTVL – 1.6&2.5
Semester-I&II

Credits: 0
Sessional: 100

1 Definitions of Eight parts of yog. (Ashtanga) 8
2 Yam and Niyam.
 Do’s and Don’t’s in life.
 i) Ahinsa, satya, astheya, bramhacharya and aparigraha
 ii) Shaucha, santosh, tapa, swadhyay, ishwarpranidhan
3 Asan and Pranayam
 i) Various yog poses and their benefits for mind & body
 ii) Regularization of breathing techniques and its effects - Types of pranayam

REFERENCES
1. ‘Yogic Asanas for Group Tarining-Part-I’ : Janardan Swami YogabhyasiMandal, Nagpur
2. “Rajayoga or conquering the Internal Nature” by Swami Vivekananda, AdvaitaAshrama (Publication Department), Kolkata.
AUDIT COURSE 1&2

PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS

Subject Code: MTVL – 1.6&2.5

Semester-I&II

1 Neetisatakam-Holistic development of personality
 Verses- 19,20,21,22 (wisdom)
 Verses- 29,31,32 (pride & heroism)
 Verses- 26,28,63,65 (virtue)
 Verses- 52,53,59 (dont’s)
 Verses- 71,73,75,78 (do’s)

2 Approach to day to day work and duties.
 ShrimadBhagwadGeeta: Chapter 2-Verses 41, 47, 48,
 Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17,23, 35,
 Chapter 18-Verses 45, 46, 48.

3 Statements of basic knowledge.
 ShrimadBhagwadGeeta: Chapter2-Verses 56, 62, 68
 Chapter 12 -Verses 13, 14, 15, 16,17, 18
 Personality of Role model. ShrimadBhagwadGeeta:
 Chapter2- Verses 17, Chapter 3-Verses 36,37,42,
 Chapter 4-Verses 18, 38,39
 Chapter18 – Verses 37,38,63

REFERENCES

1. “Srimad Bhagavad Gita” by Swami SwarupanandaAdvaita Ashram (Publication Department),
 Kolkata

2. Bhartrihari’s Three Satakam (Niti-sringar-vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.
HDL PROGRAMMING LABORATORY

Credits: 2

Subject Code: MTVL – 1.7
I – Semester

Max. Marks: 100

Course educational Objectives: The objectives of this course is

CEO 1: To gain an in-depth understanding of VHDL and to realize different circuits using it both sequential and combinational.
CEO 2: To learn the concept of memories and how they are designed using VHDL.
CEO 3: To gain an understanding of applications of VHDL in PLDs and Field Programmable Logic Arrays (FPGAs).

Course Outcomes: At the completion of the course the student will be able to

CO 1: explain VHDL as a programming language.
CO 2: Design the combinational and sequential logic circuits using VHDL.
CO 3: design Programmable logic devices (PLDs) and Networks of Arithmetic operations.
CO 4: understanding of applications of VHDL in PLDs
CO 5: Gain proficiency with VHDL software package and utilize software package to solve problems on a wide range of digital logic circuits.

1. Basic Gates
2. Adders
3. Subtractors
4. Full Adder Using Two Half Adders
5. Decoders
6. 4 Bit Binary Adder
7. Multiplexer
8. Encoder
9. Demultiplexers
10. Comparators
11. Flip flops
12. Counters
13. Shift registers
14. Mealy & Moore Machine for sequence detector
15. Implementation of ALU
16. RAM(4X4)
Course educational Objectives: The objectives of this course is

CEO 1: To provide in-depth understanding of the analog integrated circuit and building blocks

CEO 2: To provide a basic idea on mixed signal IC design

Course Outcomes: At the completion of the course the student will be able to

CO 1: Able to carry out research and development in the area of analog and mixed signal IC design.
CO 2: To be well versed with the MOS fundamentals, small signal models and analysis of MOSFET based circuits.
CO 3: Able to analyze and design analog circuits such as Differential Amplifier, OP-AMP, Current mirrors, Biasing circuits
CO 4: Able to analyze and design mixed mode circuits such as Comparator, ADCs, DACs, PLL.
CO 5: Solve practical and state of the art analog IC design problems to serve VLSI industries.

Design and evaluate the following analog circuits

1. Analysis of CE, CC and CB amplifiers and their frequency response
2. Single transistor amplifiers using NMOS (CD, CS and CG)
3. Current sinks
4. Current sources
5. Current mirrors
6. Differential amplifier
7. Two stage Operational amplifier design
DIGITAL SYSTEM DESIGN

Credits : 3

Subject Code : MTVL – 2.1
II – Semester

Max. Marks : 70
Sessionals : 30

Course educational Objectives: The objectives of this course is

CEO 1: To acquire the basic knowledge of digital logic levels and application of knowledge to understand digital electronics circuits.
CEO 2: To prepare students to perform the analysis and design of various digital electronic circuits.

Course Outcomes: At the completion of the course the student will be able to

CO 1: explain and distinguish procedures and methods in the field of complex digital system design.
CO 2: apply design methods for new applications.
CO 3: analyze and breakdown a complex digital system.
CO 4: design and develop a VHDL model of a system.
CO 5: design and develop a complex digital system based on ASIC.

UNIT – I
DESIGN OF DIGITAL SYSTEMS: ASM charts, Hardware description language and control sequence method, Reduction of state tables, state assignments.
Learning Outcomes: At the end of the unit, the student will be able to
LO 1: understand ASM charts
LO 2: understand hardware description language

UNIT – II
SEQUENTIAL CIRCUIT DESIGN: design of Iterative circuits, design of sequential circuits using ROMs and PLAs, sequential circuit design using CPLD, FPGAs.
Learning Outcomes: At the end of the unit, the student will be able to
LO 1: understand ROM & PLAs
LO 2: explain design using CPLD, fpgas

UNIT – III
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: understand different types of faults
 LO 2: explain path sensitization

UNIT – IV
TEST PATTERN GENERATION: D – algorithm, PODEM, Random testing, transitioncount testing, Signature analysis and testing for bridging faults.
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: understand PODEM
 LO 2: explain signature analysis for bridging circuits

UNIT – V
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: understand state identification and detection
 LO 2: design of fault detection experiment

UNIT – VI
PROGRAMMING LOGIC ARRAYS AND ASYNCHRONOUS SEQUENTIAL MACHINE: Design using PLA’s, PLA minimization and PLA folding. Fault models, Testgeneration and Testable PLA design. Fundamental mode model, flow table, state reduction, minimal closed covers, races, cycles and hazards.
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: design of PLA
 LO 2: understand testing of PLA design

TEXT BOOKS:
1. Z. Kohavi – “Switching & finite Automata Theory” (TMH)
2. N. N. Biswas – “Logic Design Theory” (PHI)

REFERENCES:
2. Charles H. Roth Jr. – “Fundamentals of Logic Design”.
Course educational Objectives: The objectives of this course is

 CEO 1: Attain mastery in applying VLSI concepts to Engineering problems so as to meet the need of the industry, teaching, higher education or research.
 CEO 2: To understand other process steps like etching, implantation and metallization and their implications.
 CEO 3: To understand the semiconductor materials, devices and technology historical evaluations
 CEO 4: To explain the oxidization process and quality measures in the fabrication

Course Outcomes: At the completion of the course the student will be able to

 CO 1: Identify the various design methodologies
 CO 2: Describe the combinational optimization
 CO 3: Understand the modeling & simulation
 CO 4: Apply logic synthesis and verification
 CO 5: Assess the physical design automation.

UNIT- I
PRELIMINARIES: Introduction to Design Methodologies, Design Automation tools, Algorithmic Graph Theory, Computational Complexity, Tractable and Intractable Problems.
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: understand design methodologies
 LO 2: explain graph theory

UNIT- II
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: understand programming tools
 LO 2: explain different types of algorithms

UNIT- III
MODELLING AND SIMULATION: Gate Level Modeling and Simulation, Switch level modeling and simulation.
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: observe the simulation of gate level modeling
 LO 2: explain level modeling
UNIT - IV
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: explain two level logic synthesis
 LO 2: understand scheduling algorithms

UNIT – V
PHYSICAL DESIGN AUTOMATION OF FPGA’S: FPGA technologies, Physical Design cycle for FPGA’s partitioning and Routing for segmented and staggered models.
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: understand FPGA technologies
 LO 2: explain routing

UNIT – VI
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: understand physical design
 LO 2: explain topological routing

TEXT BOOKS:

REFERENCES:
Elective III
LOW POWER VLSI DESIGN

Credits: 3
Max. Marks: 70
Sessionals: 30

Subject Code: MTVL – 2.3
II – Semester

Course educational Objectives: The objectives of this course is

CEO 1: This course addresses a profound analysis on the development of the CMOS & Bi-CMOS digital circuits for a low voltage low power environment
CEO 2: To study the concepts of device behavior and modeling
CEO 3: To study the concepts of low voltage, low power logic circuits

Course Outcomes: At the completion of the course the student will be able to

CO 1: Capability to recognize advanced issues in VLSI systems, specific to the deep-submicron silicon technologies.
CO 2: Students able to understand deep submicron CMOS technology and digital CMOS design styles.
CO 3: To design chips used for battery-powered systems and high-performance circuits
CO 4: Explain the equations, approximations and techniques available for deriving a device model with specified properties
CO 5: Explore and improvise on the latest techniques used for designing power-efficient logic gates, latches, and flip-flops

UNIT I
LOW POWER DESIGN, AN OVER VIEW: Introduction to low-voltage low power design, limitations, Silicon-on-Insulator.
Learning Outcomes: At the end of the unit, the student will be able to
LO 1: explain low power low voltage design
LO 2: explain silicon-on-insulator

UNIT II
Learning Outcomes: At the end of the unit, the student will be able to
LO 1: understand BICMOS process
LO 2: explain deep submicron processes

UNIT III
DEVICE BEHAVIOR AND MODELING: Advanced MOSFET models, limitations of MOSFET models, bipolar models. Analytical and Experimental characterization of sub-half micron MOS devices, MOSFET in a Hybrid mode environment.
Learning Outcomes: At the end of the unit, the student will be able to
LO 1: understand device behavior modeling
LO 2: explain experimental characterization of MOS devices

UNIT IV
CMOS AND Bi-CMOS LOGIC GATES: Conventional CMOS and BiCMOS logic gates. Performance evaluation.
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: explain CMOS and BiCMOS logic gates
 LO 2: understand performance evaluation of CMOS

UNIT V
LOW-VOLTAGE LOW POWER LOGIC CIRCUITS: Comparison of advanced BiCMOS Digital circuits. ESD-free Bi CMOS, Digital circuit operation and comparative Evaluation.
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: understand low voltage low power logic circuits
 LO 2: explain digital circuit operation

UNIT VI
LOW POWER LATCHES AND FLIP FLOPS: Evolution of Latches and Flip flops - quality measures for latches and Flip flops, Design perspective.
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: understand latches & flipflops
 LO 2: explain design perspective

TEXT BOOKS
1. CMOS/BiCMOS ULSI low voltage, low power by Yeo Rofail/ Gohl (3 Authors)-Pearson Education Asia 1st Indian reprint, 2002

REFERENCES
2. CMOS Digital ICs sung-mo Kang and Yusufleblebici 3rd edition TMH2003 (chapter 11)
3. VLSI DSP systems, Parhi, John Wiley & sons, 2003 (chapter 17)
Elective-III

WIRELESS COMMUNICATIONS AND NETWORKS

Credits : 3

Subject Code : MTVL – 2.3

II – Semester

Max. Marks :70

Sessionals :30

Course educational Objectives: The objectives of this course is

CEO 1: To enable students to acquire in-depth knowledge in the field of wireless communication technology with an ability to integrate existing and new knowledge with the advancement of the technology.

CEO 2: To develop students to critically analyze the problems in the field of wireless communication technology and find optimal solution.

CEO 3: To train students to conduct research and experiments by applying appropriate techniques and tools with an understanding of the limitations for sustainable development of society.

CEO 4: To prepare students to act as a member and leader of the team to contribute positively to manage projects efficiently in the field of wireless communication technology.

Course Outcomes: At the completion of the course the student will be able to

CO1: Demonstrate their understanding on functioning of wireless communication system and evolution of different wireless communication systems and standards.

CO2: Compare different technologies used for wireless communication systems.

CO3: Explain the architecture, functioning, protocols, capabilities and application of various wireless communication networks.

CO4: Demonstrate an ability explain multiple access techniques for Wireless Communication

CO5: Demonstrate an ability to evaluate design challenges, constraints and security issues associated with Ad-hoc wireless networks.

UNIT-I

Learning Outcomes: At the end of the unit, the student will be able to

LO 1: understand wireless communications

LO 2: explain fundamentals of wireless communication

UNIT-II

MULTIPLE ACCESS TECHNIQUES FOR WIRELESS COMMUNICATION: FDMA, TDMA, SSMA (FHMA/CDMA/Hybrid Techniques) SDMA Technique (As Applicable

Learning Outcomes: At the end of the unit, the student will be able to
- **LO 1:** explain multiple access techniques
- **LO 2:** understand packet transmission

UNIT-III

Learning Outcomes: At the end of the unit, the student will be able to
- **LO 1:** explain wireless networking
- **LO 2:** understand various protocols

UNIT-IV
Wireless Data Services, Cellular Digital Packet Data (CDPD), Advanced Radio Data Information Systems (ARDIS), RAM Mobile Data (RMD), Common Channel Signaling (CCS), Broad Band ISDN and ATM, Signaling System No.7 (SS7), Network Services Part (NSP), SS7 User Part, Signaling Traffic in SS7, SS7 Services, Performance of SS7.

Learning Outcomes: At the end of the unit, the student will be able to
- **LO 1:** explain data services
- **LO 2:** explain signaling systems

UNIT-V
MOBILE IP AND WIRELESS APPLICATION PROTOCOL: Mobile IP Operation of Mobile IP, Co-located Address, Registration, Tunneling, WAP Architecture, Overview, WML Scripts, WAP Service, WAP Session protocol, Wireless Transaction, Wireless Datagram, Infrared LAN’s, Spread Spectrum LAN’s, Narrowband Microwave LAN’s, IEEE 802 Protocol Architecture, IEEE 802 Architecture and Services, 802.11 Medium Access Controls, 802.11 Physical Layers.

Learning Outcomes: At the end of the unit, the student will be able to
- **LO 1:** explain mobile IP concepts
- **LO 2:** explain WAP services

UNIT-VI

Learning Outcomes: At the end of the unit, the student will be able to
- **LO 1:** explain Bluetooth transmission
- **LO 2:** Explain mobile data network
TEXT BOOKS:

REFERENCES:

Elective-III

RF AND MICROWAVE INTEGRATED CIRCUITS

Credits : 3

Max. Marks : 70
Sessionals : 30

Subject Code : MTVL – 2.3
II – Semester

Course educational Objectives: The objectives of this course is

CEO 1: To provide basic information on the RF circuit design
CEO 2: To familiar with RF CAD software to design linear and non-linear RF circuits
CEO 3: To design narrow and broadband RF circuits
CEO 4: To understand the difference between transient and harmonic balance analysis

Course Outcomes: At the completion of the course the student will be able to

CO 1: Understand RF circuits, devices, and system.
CO 2: Understand design of RF & Microwave Integrated Circuit.
CO 3: Solve problems related to it
CO 4: Analyze the RF & microwave circuits using various numerical techniques.
CO 5: Describe some basic properties of different radio architectures. Explain the applications of RF & MIC.

UNIT-I
Analysis and Design of RF and Microwave Lines – Review of Transmission Lines, Parallel Plate Transmission Lines, Low -Frequency Solution, High Frequency Solution,

Learning Outcomes: At the end of the unit, the student will be able to

LO 1: understand analysis of RF and microwave lines
LO 2: understand high frequency solutions

UNIT–II
Learning Outcomes: At the end of the unit, the student will be able to

LO 1: explain strip line transmission lines
LO 2: explain low frequency solution

UNIT–III
Microstrip/Strip line Based Filters. Resonators, Plane Shifters, Micro Strip Based Gyrators, Circulators And Isolators, Directional Couplers.
Learning Outcomes: At the end of the unit, the student will be able to

LO 1: understand resonators
LO 2: explain directional couplers
UNIT–IV
Microwave Active Devices – Microwave Transistors, GaAs FETS (Structures, Equivalent Circuit), Low Noise Amplifiers, Power Amplifiers, Oscillators, Detectors, Mixers, Modulators and Switches.
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: explain microwave active devices
 LO 2: understand low noise amplifiers

UNIT–V
Technology of MICS: Deposition Techniques – Vacuum Evaporation – Vacuum Sputtering Ion Planting. MBE (molecular Beam Epitaxy) – Photo Lithography, Mask Preparation, Thick Film Technology, GaAs Technology.
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: explain technology of MICS
 LO 2: understand photolithography

UNIT–VI
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: explain MIC packaging
 LO 2: understand I/O terminations

TEXT BOOKS:

REFERENCES:
Elective-IV

MICROCONTROLLERS AND EMBEDDED SYSTEMS

Credits: 3
Subject Code :MTVL – 2.4
II – Semester

Max. Marks :70
Sessionals :30

Course educational Objectives: The objectives of this course is

CEO 1: To have knowledge about the basic working of a microcontroller system and its programming in assembly language.
CEO 2: To provide experience to integrate hardware and software for microcontroller applications systems.

Course Outcomes: At the completion of the course the student will be able to

CO 1: Learn basic hardware of various microcontrollers.
CO 2: Assembly and programming concepts, jump and call instructions
CO 3: Hardware interfacing of microcontroller with led’s, seven segment, sensors
CO 4: Introduction to 16-bit microcontrollers.
CO 5: Foster ability to understand the role of embedded systems in industry.

UNIT-I
Learning Outcomes: At the end of the unit, the student will be able to
LO 1: explain overview of embedded system
LO 2: understand trade offs

UNIT-II
Learning Outcomes: At the end of the unit, the student will be able to
LO 1: explain combinational logic
LO 2: explain sequential logic

UNIT-III
GENERAL PURPOSE PROCESSORS (SOFTWARE): Introduction, Basic Architecture, Operation, Programmer’s view, Development Environment, Application-Specific Instruction-set Processors, Selecting a Microprocessor.
Learning Outcomes: At the end of the unit, the student will be able to
LO 1: explain general purpose processors
LO 2: understand development of processors

UNIT-IV
MEMORY: Introduction, Memory types, Memory Hierarchy and Cache, Advanced

Learning Outcomes: At the end of the unit, the student will be able to
- **LO 1:** explain different memory types
- **LO 2:** understand memory access

UNIT-V

Learning Outcomes: At the end of the unit, the student will be able to
- **LO 1:** understand 8051 microcontroller
- **LO 2:** explain real time clocks

UNIT-VI

STATE MACHINE AND CONCURRENT PROCESS MODELS: Introduction, Models Vs Languages, Text Vs Graphics, Textual Languages Vs Graphical Languages, An Example, A Basic State Machine Model, FSM with Data Path Model, FSMD Using State Machines, Concurrent Process Model, Communication among Processes.

Learning Outcomes: At the end of the unit, the student will be able to
- **LO 1:** explain state machines
- **LO 2:** explain fsm

TEXT BOOKS:

1. Embedded System Design: A Unified Hardware/Software Introduction By Frank vahid / Tony Givargis John wiley & sons
2. The 8051 Microcontroller & Embedded Systems By Muhammad Ali Mazidi & Janice Gillispie Mazidi PHI

REFERENCES:

1. Embedded Systems Architecture, Programming and Design By Raj Kamal TMH
2. Embedded Software Priner By Simon.
Elective-IV

DIGITAL SYSTEMS TESTING AND TESTABLE DESIGN

Credits: 3

Subject Code: MTVL – 2.4

II – Semester

Max. Marks: 70
Sessionals: 30

Course educational Objectives: The objectives of this course is

CEO 1: To expose the students, the basics of testing techniques for VLSI circuits and Test Economics.
CEO 2: This practical, hands-on course introduces digital logic design, system-level design using current state of the art in EDA tools used by professionals in VLSI field today

Course Outcomes: At the completion of the course the student will be able to

CO 1: apply the concepts in testing which can help them design a better yield in IC design.
CO 2: tackle the problems associated with testing of semiconductor circuits at earlier design levels so as to significantly reduce the testing costs.
CO 3: analyze the various test generation methods for static & dynamic CMOS circuits.
CO 4: identify the design for testability methods for combinational & sequential CMOS circuits. CO5: recognize the BIST techniques for improving testability.
CO 5: Ability to design and implement digital circuits under realistic constraints and conditions.

UNIT-I
INTRODUCTION TO TEST AND DESIGN FOR TESTABILITY (DFT) SIMULATIONS: Fundamentals, Modeling Digital Circuits at Logic Level, Register Level and Structural Models. Levels of Modeling. Types of Simulation, Delay models, Element evaluation, Hazard detection, Gate level event driven simulation.

Learning Outcomes: At the end of the unit, the student will be able to
LO 1: explain modeling digital circuits
LO 2: understand types of simulation

UNIT-II

Learning Outcomes: At the end of the unit, the student will be able to
LO 1: explain logic fault models
LO 2: understand single stuck and multiple stuck

UNIT-III
TESTING FOR SINGLE STUCK FAULTS (SSF): Automated Test Pattern Generation (ATPG/ATG) For SSFs In Combinational And Sequential Circuits, Functional Testing With Specific Fault Models, Vector Simulation – ATPG Vectors, Formats,
Compaction And Compression ,Selecting ATPG Tool.

Learning Outcomes: At the end of the unit, the student will be able to
- **LO 1:** explain test pattern
- **LO 2:** understand vector simulation

UNIT- IV

DESIGN FOR TESTABILITY: Testability Trade-Offs, Techniques. Scan Architectures And Testing – Controllability And Absorbability, Generic Boundary Scan, Full Integrated Scan, Storage Cells For Scan Design. Board Level And System Level DFT Approaches.

Learning Outcomes: At the end of the unit, the student will be able to
- **LO 1:** understand testability trade-offs
- **LO 2:** explain boundary scan

UNIT- V

BOUNDARY SCANS STANDARDS AND BIST: Compression Techniques – Different Techniques, Syndrome Test And Signature Analysis, BIST Concepts And Test Pattern Generation. Specific BIST Architectures CSBL, BEST, RTS, LOCST, STUMPS, CBIST, CEBS, RTD, SST, CATS, CSTP, BILBO. Brief Ideas on Some Advanced BIST Concepts And Design for Self-Test at Board Level.

Learning Outcomes: At the end of the unit, the student will be able to
- **LO 1:** explain BIST concepts
- **LO 2:** understand BIST architectures

UNIT- VI

MEMORY BIST (MBIST): Memory Test Architectures And Techniques – Introduction to Memory Test, Types Of Memories And Integration, Embedded Memory Testing Model, Memory Test Requirements for MBIST, Brief Ideas on Embedded Core Testing, Introduction to Automatic In Circuit Testing (ICT), JTAG Testing Features.

Learning Outcomes: At the end of the unit, the student will be able to
- **LO 1:** explain memory test architectures
- **LO 2:** understand embedded memory testing model

TEXT BOOKS:

2. Alfred Crouch, Design for Test for Digital ICs and Embedded core systems, Prentice Hall.

REFERENCES:

Elective-IV

DSP PROCESSORS AND ARCHITECTURES

Credits: 3

Subject Code: MTVL – 2.4

Max. Marks: 70

II – Semester

Sessionals: 30

Course educational Objectives: The objectives of this course is

CEO 1: To give an exposure to the various fixed point & a floating point DSP architectures and to develop applications using these processors.

CEO 2: Design and implement signal processing modules in DSPs

Course Outcomes: At the completion of the course the student will be able to

CO 1: Recognize the fundamentals of fixed and floating point architectures of various DSPs.

CO 2: Learn the architecture details and instruction sets of fixed and floating point DSPs

CO 3: Illustrate the features of on-chip peripheral devices and its interfacing along with its programming details.

CO 4: Analyze and learn to implement the signal processing algorithms in DSPs

CO 5: Learn the DSP programming tools and use them for applications

UNIT I

INTRODUCTION TO DIGITAL SIGNAL PROCESSING

Introduction, A Digital signal-processing system, The sampling process, Discrete time sequences Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT), Linear time-invariant systems, Digital filters, Decimation and interpolation, Analysis and Design tool for DSP Systems MATLAB, DSP using MATLAB.

Learning Outcomes: At the end of the unit, the student will be able to

LO 1: explain digital signal processing system

LO 2: understand DFT & FFT

UNIT II

COMPUTATIONAL ACCURACY IN DSP IMPLEMENTATIONS

Number formats for signals and coefficients in DSP systems, Dynamic Range and Precision, Sources of error in DSP implementations, A/D Conversion errors, DSP Computational errors, D/A Conversion Errors, Compensating filter.

Learning Outcomes: At the end of the unit, the student will be able to

LO 1: explain computational accuracy in DSP

LO 2: explain D/A conversion errors

UNIT III

ARCHITECTURES FOR PROGRAMMABLE DSP DEVICES AND EXECUTION

Basic Architectural features, DSP Computational Building Blocks, Bus Architecture and Memory, Data Addressing Capabilities, Address Generation Unit, Programmability and Program Execution, Speed Issues, Features for External interfacing, Hardware looping, Interrupts, Stacks, Relative Branch support, Pipelining and Performance, Pipeline Depth,
Interlocking, Branching effects, Interrupt effects, Pipeline Programming models

Learning Outcomes: At the end of the unit, the student will be able to
- LO 1: explain DSP building blocks
- LO 2: explain pipelining and performance

UNIT IV
PROGRAMMABLE DIGITAL SIGNAL PROCESSORS
Commercial Digital signal-processing Devices, Data Addressing modes of TMS320C54XX DSPs, Data Addressing modes of TMS320C54XX Processors, Memory space of TMS320C54XX Processors, Program Control, TMS320C54XX instructions and Programming, On-Chip Peripherals, Interrupts of TMS320C54XX processors, Pipeline Operation of TMS320C54XX Processors.

Learning Outcomes: At the end of the unit, the student will be able to
- LO 1: understand TMS320C54XX
- LO 2: explain addressing modes

UNIT V
IMPLEMENTATIONS OF BASIC DSP ALGORITHMS AND FFT ALGORITHMS
The Q-notation, FIR Filters, IIR Filters, Interpolation Filters, Decimation Filters, PID Controller, Adaptive Filters, 2-D Signal Processing, An FFT Algorithm for DFT Computation, A Butterfly Computation, Overflow and scaling, Bit-Reversed index generation, An 8-Point FFT implementation on the TMS320C54XX, Computation of the signal spectrum.

Learning Outcomes: At the end of the unit, the student will be able to
- LO 1: explain FIR filters
- LO 2: explain Adaptive filters

UNIT VI
INTERFACING MEMORY AND I/O PERIPHERALS TO PROGRAMMABLE DSP DEVICES
Memory space organization, External bus interfacing signals, Memory interface, Parallel I/O interface, Programmed I/O, Interrupts and I/O, Direct memory access (DMA), A Multichannel buffered serial port (McBSP), McBSP Programming, a CODEC interface circuit, CODEC programming, A CODEC-DSP interface example.

Learning Outcomes: At the end of the unit, the student will be able to
- LO 1: explain bus interfacing models
- LO 2: Understand memory interfacing
TEXT BOOKS:

REFERENCES:

Course educational Objectives: The objectives of this course is

CEO 1: To gain an in-depth understanding of VHDL and to realize different circuits using it both sequential and combinational.
CEO 2: To learn the concept of memories and how they are designed using VHDL.
CEO 3: To gain an understanding of applications of VHDL in PLDs and Field Programmable Logic Arrays (FPGAs).

Course Outcomes: At the completion of the course the student will be able to

CO 1: explain VHDL as a programming language.
CO 2: Design the combinational and sequential logic circuits using VHDL.
CO 3: Design Programmable logic devices (PLDs) and Networks of Arithmetic operations.
CO 4: Understanding of applications of VHDL in PLDs
CO 5: Gain proficiency with VHDL software package and utilize software package to solve problems on a wide range of digital logic circuits.

Design and synthesize the following digital circuits using Verilog HDL and then verify the implemented logic with different hardware modules/kits (CPLD/FPGA kits).

1. Basic Gates
2. Adders
3. Subtractors
4. Full Adder Using Two Half Adders
5. Decoders
6. 4 Bit Binary Adder
7. Multiplexer
8. Encoder
9. Demultiplexers
10. Comparators
11. Flip flops
12. Counters
13. Shift registers
14. Mealy & Moore Machine for sequence detector
15. Implementation of ALU
16. RAM (4X4)
MIXED SIGNAL SIMULATION LABORATORY

Subject Code : MTVL – 2.7
II – Semester

Credits : 2
Max. Marks : 100

Course Educational Objectives: The objectives of this course is

CEO 1: To provide in-depth understanding of the analog integrated circuit and building blocks

CEO 2: To provide a basic idea on mixed signal IC design

Course Outcomes: At the completion of the course the student will be able to

CO 1: Able to carry out research and development in the area of analog and mixed signal IC design.

CO 2: To be well versed with the MOS fundamentals, small signal models and analysis of MOSFET based circuits.

CO 3: Able to analyze and design analog circuits such as Differential Amplifier, OP-AMP, Current mirrors, Biasing circuits.

CO 4: Able to analyze and design mixed mode circuits such as Comparator, ADCs, DACs, PLL.

CO 5: Solve practical and state of the art analog IC design problems to serve VLSI industries.

By considering suitable complexity Mixed-Signal application based circuits (circuits consisting of both analog and digital parts), the students are required to perform the following aspects using necessary software tools.

1. Analog Circuits Simulation using Spice Software.

2. Digital Circuits Simulation using Xilinx Software.

5. Parasitic Values Estimation from Layout.

6. Layout Vs Schematic.
 a) Cmos Inverter
 b) Two Input Cmos N Gate
 c) Two Input Cmos Nor Gate

8. Design Rule Checks.
 a) Full Custom Layout of Inverter
 b) Full Custom Layout of two input NAND
MTVL2.7 Mixed Signal Simulation LAB

MTVL2.8 Mini Project with Seminar
Elective-V
SYSTEM MODELLING & SIMULATION

Subject Code :MTVL –3.1
III – Semester
Max. Marks :70
Credits : 3
Sessionals :30

Course educational Objectives: The objectives of this course is

CEO 1: Define the basics of simulation modeling and replicating the practical situations in organizations
CEO 2: Develop simulation model using heuristic methods.
CEO 3: Generate random numbers and random variates using different techniques.
CEO 4: Analysis of Simulation models using input analyser, and output analyser

Course Outcomes: At the completion of the course the student will be able to

CO 1: Describe the role of important elements of discrete event simulation and modeling paradigm.
CO 2: Conceptualize real world situations related to systems development decisions, originating from source requirements and goals.
CO 3: Interpret the model and apply the results to resolve critical issues in a real world environment.
CO 4: Apply random number variates to develop simulation models
CO 5: Analyze output data produced by a model and test validity of the model

UNIT I
Learning Outcomes: At the end of the unit, the student will be able to
LO 1: understand basic simulation modeling
LO 2: explain discrete event simulation

UNIT II
SIMULATION SOFTWARE:
Comparison of simulation packages with Programming Languages, Classification of Software, Desirable Software features, General purpose simulation packages – Arena, Extend and others, Object Oriented Simulation, Examples of application oriented simulation packages.
Learning Outcomes: At the end of the unit, the student will be able to
LO 1: explain simulation packages
LO 2: understand arena extend

UNIT III
BUILDING SIMULATION MODELS AND MODELING TIME DRIVEN SYSTEMS:
Guidelines for determining levels of model detail, Techniques for increasing model validity and credibility. Modeling input signals, delays, System Integration, Linear Systems,
Motion Control models, numerical experimentation

Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: explain motion control models
 LO 2: understand model input signals

UNIT IV
EXOGENOUS SIGNALS AND EVENTS:
Disturbance signals, state machines, petri nets & analysis, System encapsulation, Probabilistic systems, Discrete Time Markov processes, Random walks, Poisson processes, the exponential distribution, simulating a poison process, Continuous – Time Markov processes.
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: explain disturbance signals
 LO 2: understand time Markov processes

UNIT V
EVEN DRIVEN MODELS:
Simulation diagrams, Queuing theory, simulating queuing systems, Types of Queues, Multiple servers.
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: explain simulation diagrams
 LO 2: explain queuing theory

UNIT VI
SYSTEM OPTIMIZATION:
System identification, Searches, Alpha/beta trackers, multidimensional optimization, modeling and simulation methodology.
Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: explain system identification process
 LO 2: understand simulation methodology

TEXT BOOKS:

REFERENCES:
Elective-V
EMI / EMC

Credits : 3

Subject Code :MTVL –3.1
III– Semester

Max. Marks :70
Sessionals :30

Course educational Objectives: The objectives of this course is

CEO 1: To familiarize with the fundamentals that are essential for electronics industry in the field of EMI / EMC
CEO 2:To understand EMI sources and its measurements
CEO 3:To understand the various techniques for electromagnetic compatibility.
CEO 4:Acquire broad knowledge of various EM radiation measurement techniques.

CourseOutcomes: At the completion of the course the student will be able to

CO 1:Designing electronic systems that function without errors or problems related to electromagnetic compatibility.
CO 2:Diagnose and solve basic electromagnetic compatibility problems.
CO 3:Understand the effect of EM noise in system environment and its sources.
CO 4:Understanding about the functions of a ground, understanding about cables and connectors.
CO 5:Understanding the various aspects of shielding.

UNIT I
Learning Outcomes: At the end of the unit, the student will be able to
LO 1:explain electromagnetic environment
LO 2:understand practical experiences and concerns

UNIT II
EMI FROM APPARATUS, CIRCUITS AND OPEN AREA TEST SITES:Electromagnetic Emissions, Noise from Relays and Switches, Nonlinearities in

Learning Outcomes: At the end of the unit, the student will be able to
- **LO 1:** explain passive intermodulation
- **LO 2:** explain EMI

UNIT III

Learning Outcomes: At the end of the unit, the student will be able to
- **LO 1:** understand radiated interference
- **LO 2:** explain conducted interference

UNIT IV
GROUNDING, SHIELDING, BONDING AND EMI FILTERS: Principles and Types of Grounding, Shielding and Bonding, Characterization of Filters, Power Line Filter Design.

Learning Outcomes: At the end of the unit, the student will be able to
- **LO 1:** understand grounding
- **LO 2:** understand emi filters

UNIT V
CABLES, CONNECTORS, COMPONENTS AND EMC STANDARDS: EMISuppression Cables, EMC Connectors, EMC Gaskets, Isolation Transformers, Opto-Isolators, National/International EMC Standards.

Learning Outcomes: At the end of the unit, the student will be able to
- **LO 1:** understand cable connectors
- **LO 2:** understand EMC connectors

TEXT BOOKS:

2. Electromagnetic Interference and Compatibility IMPACT series, IIT-Delhi, Modules 1–9.

REFERENCE:

Elective-V
HARDWARE-SOFTWARE CO-DESIGN

Credits: 4

Subject Code : MTVL – 3.1
III – Semester
Max. Marks : 70
Sessionals : 30

Course educational Objectives: The objectives of this course is

CEO 1: Profound knowledge of the architectures of computer systems.

CEO 2: analyze and explain the control-flow and data-flow of a software program and a cycle-based hardware description,

Course Outcomes: At the completion of the course the student will be able to

CO 1: transform simple software programs into cycle-based hardware descriptions with equivalent behavior and vice versa,

CO 2: partition simple software programs into hardware and software components ,and create appropriate hardware-software interfaces to reflect this partitioning.

CO 3: identify performance bottlenecks in a given hardware-software architecture and optimize them by transformations on hardware and software components, and

CO 4: use simulation software to co-simulate software programs with cycle-based hardware descriptions.

CO 5: explain the control-flow and data-flow of a software program and a cycle-based hardware description,

UNIT- I
CO-DESIGN ISSUES: Co–design Models, Architectures, Languages, A Generic Co-Design Methodology,

Learning Outcomes: At the end of the unit, the student will be able to

LO 1: explain codesign models
LO 2: explain generic codesign methodology

UNIT- II

Learning Outcomes: At the end of the unit, the student will be able to

LO 1: explain synthesis algorithms
LO 2: explain cosynthesis

UNIT-III
PROTOTYPING, EMULATION AND TARGET ARCHITECTURES: Prototyping and emulation techniques, Prototyping and emulation environments future developments in emulation and prototyping, architecture specialization techniques, system communication infrastructure, Target Architectures And Application System Classes, Architectures For Control Dominated System And Data Dominated Systems.

Learning Outcomes: At the end of the unit, the student will be able to
- LO 1: understand prototyping
- LO 2: explain data dominated systems

UNIT –IV
COMPILATION TECHNIQUES AND TOOLS FOR EMBEDDED PROCESSOR ARCHITECTURES: Modern Embedded Architectures, Embedded Software Development Needs, Compilation Technologies, Practical Consideration in a Compiler Development Environment

Learning Outcomes: At the end of the unit, the student will be able to
- LO 1: understand modern embedded architectures
- LO 2: explain embedded software

UNIT- V
DESIGN SPECIFICATION AND VERIFICATION: The Co-Design Computational Model, Concurrency, Co-Coordination Coordinating Concurrent Computations, Interfacing Components, Design Verification, Implementation Verification, Verification Tools, Interface Verification.

Learning Outcomes: At the end of the unit, the student will be able to
- LO 1: explain co-design computational model
- LO 2: understand concurrency

UNIT- VI

Learning Outcomes: At the end of the unit, the student will be able to
- LO 1: understand system level specification
- LO 2: explain system level design

TEXT BOOK:
1. Hardware/software co-design principles and practice, kluwer academic publishers

Open Elective

CELLULAR AND MOBILE COMMUNICATIONS

Credits: 3
Max. Marks :70
Sessionals :30
Course Objectives: The objectives of this course is

CEO 1: To know the evolution of Mobile communication and cell concept to improve capacity of the system
CEO 2: To know the fading mechanism and types of fading and effect of fading on Mobile communication.
CEO 3: To know the role of equalization in Mobile communication and to study different types of Equalizers and Diversity techniques.
CEO 4: To know the types of channel coding techniques, data transmission modes and services of GSM.

Course Outcomes: At the completion of the course the student will be able to

CO 1: demonstrate knowledge on : cellular concepts like frequency reuse, fading, equalization, GSM, CDMA
CO 2: demonstrate knowledge hand-off and interface and apply the concept to calculate link budget using path loss model
CO 3: demonstrate knowledge equalization and different diversity techniques
CO 4: apply the concept of GSM in real time applications.
CO 5: compare different multiple access techniques in mobile communication

UNIT- I
Introduction to Wireless communications, examples of wireless communication system, the Cellular concept and system design fundamentals, Frequency reuse, channel assignment strategies, handoff strategies, Interference and system capacity, Trunk and grade services, Methods for improving coverage and capacity in cellular system.
Learning Outcomes: At the end of the unit, the student will be able to
LO 1: understand examples of wireless communications
LO 2: explain frequency reuse

UNIT- II
Multiple access techniques for wireless communications FDMA, TDMA, Spread spectrum techniques, SDMA, Packet Radio, CSMA, Capacity of cellular CDMA with multiple cells and capacity of SDMA.
Learning Outcomes: At the end of the unit, the student will be able to
LO 1: explain multiple access techniques
LO 2: explain CSMA

UNIT-III
Wireless systems and standards, AMPS, IS – 94, GSM traffic, Examples of GSM cell, Frame structure of GSM cell, Details of forward and reverse CDMA channels.
Learning Outcomes: At the end of the unit, the student will be able to
LO 1: explain AMPS
LO 2: explain GSM traffic

UNIT-IV
Personal access communication systems, personal Mobile satellite communications, Integrating Geo, LEO MEO satellite and terrestrial mobile systems, Rake receiver and Advanced Rake receiver,
Learning Outcomes: At the end of the unit, the student will be able to
UNIT-V
Mobile Radio Propagation, Large scale path loss, Reflection, Diffraction, Scattering, Outdoor and Indoor Propagation models, small signal fading and multi path, measurement of small scale path loss, parameters and multi path channels, fading due to multi path, fading effect due to Doppler spread, small scale fading models, equalization, Diversity.

Learning Outcomes: At the end of the unit, the student will be able to

- **LO 1:** Explain large scale path loss
- **LO 2:** Explain fading due to multipath

Text Book:
2. Wireless communications Principles and Practice, Second Editions, THEODORE S. REPPAPORT.

REFERENCES:
1. Wireless Digital Communications, DR. KAMLO FEHER.
2. Electronic Communication system, WAYNE TOMASI.
3. Wireless Communications, SANJY SHARMS

OPEN ELECTIVE
BUSINESS ANALYTICS

Credits : 3
Max. Marks : 70
Sessionals : 30

Subject Code : MTRM – 3.2

III– Semester

Course educational Objectives: The objectives of this course is

- **CEO 1:** Investigate data to establish new relationships and patterns
- **CEO 2:** Analyze the correlation between different variables
- **CEO 3:** Analyze the possibility of default and generate customer records
- **CEO 4:** Use tools such as Excel and open source to interpret data
Course Outcomes: At the completion of the course the student will be able to

CO 1: Understand and critically apply the concepts and methods of business analytics

CO 2: Identify, model and solve decision problems in different settings

CO 3: Interpret results/solutions and identify appropriate courses of action for a given managerial situation whether a problem or an opportunity

CO 4: Create viable solutions to decision making problems

CO 5: Instil a sense of ethical decision-making and a commitment to the long-run welfare of both organisations and the communities they serve

Learning Outcomes: At the end of the unit, the student will be able to

LO 1: explain business analytics
LO 2: explain relationship of BA

Learning Outcomes: At the end of the unit, the student will be able to

LO 1: explain regression analysis
LO 2: explain BA data models

Unit 3: Organization Structures of Business analytics, Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes. Descriptive Analytics, predictive analytics, predictive Modelling, Predictive analytics analysis, Data Mining, Data Mining Methodologies, Prescriptive analytics and its step in the business analytics Process, Prescriptive Modelling, nonlinear Optimization.

Learning Outcomes: At the end of the unit, the student will be able to

LO 1: explain organization structure
LO 2: explain outsourcing

Unit 4: Forecasting Techniques: Qualitative and Judgmental Forecasting, Statistical Forecasting Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time Series with a Linear Trend, Forecasting Time Series with Seasonality, Regression Forecasting with Casual Variables, Selecting Appropriate Forecasting Models. Monte Carlo Simulation and Risk Analysis:

Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: explain forecasting techniques
 LO 2: explain forecasting models

Unit 5: Decision Analysis: Formulating Decision Problems, Decision Strategies with the without Outcome Probabilities, Decision Trees, the Value of Information, Utility and Decision Making.

Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: explain decision analysis
 LO 2: explain decision trees

Unit 6: Recent Trends in: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data journalism.

Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: explain recent trends in
 LO 2: understand visual data recovery

Reference:
2. Business Analytics by James Evans, persons Education

OPEN ELECTIVE
INDUSTRIAL SAFETY

Credits : 3
Max. Marks : 70
Sessionals : 30

Subject Code : MTRM – 3.2
III- Semester

Course educational Objectives: The objectives of this course is

 CEO 1: To know about Industrial safety programs and toxicology, Industrial laws, regulations and source models
 CEO 2: To understand about fire and explosion, preventive methods, relief and its sizing methods
 CEO 3: To analyze industrial hazards and its risk assessment.

Course Outcomes: At the completion of the course the student will be able to

 CO 1: Analyze the effect of release of toxic substances
 CO 2: Understand the industrial laws, regulations and source models.
 CO 3: Apply the methods of prevention of fire and explosions.
 CO 4: Understand the relief and its sizing methods.
 CO 5: Understand the methods of hazard identification and preventive measures.
Unit-I: Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc. Safety color codes. Fire prevention and firefighting, equipment and methods.

Learning Outcomes: At the end of the unit, the student will be able to

- **LO 1:** explain industrial safety
- **LO 2:** explain safety control

Unit-II: Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

Learning Outcomes: At the end of the unit, the student will be able to

- **LO 1:** explain replacement economy
- **LO 2:** explain service life of equipment

Learning Outcomes: At the end of the unit, the student will be able to

- **LO 1:** explain Wear and corrosion prevention
- **LO 2:** explain side feed lubrication

Unit-IV: Fault tracing: Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment’s like, i. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

Learning Outcomes: At the end of the unit, the student will be able to

- **LO 1:** explain fault tracing
- **LO 2:** explain fault finding activities

Learning Outcomes: At the end of the unit, the student will be able to

- **LO 1:** explain periodic and preventive maintenance
- **LO 2:** explain repairing schemes
OPEN ELECTIVE
OPERATIONS RESEARCH

Credits : 3

Subject Code : MTRM – 3.2

Max. Marks : 70

III– Semester

Sessionals : 30

Course educational Objectives: The objectives of this course is

CEO 1: Ability to understand and analyze managerial problems in industry so that they are able to use resources (capitals, materials, staffing, and machines) more effectively.

CEO 2: Knowledge of formulating mathematical models for quantitative analysis of managerial problems in industry.

CEO 3: Skills in the use of Operations Research approaches and computer tools in solving real problems in industry.

CEO 4: Mathematical models for analysis of real problems in Operations Research.

Course Outcomes: At the completion of the course the student will be able to

CO 1: Be able to understand the application of OR and frame a LP Problem with solution – graphical and through solver add in excel (software)

CO 2: Be able to build and solve Transportation and Assignment problems using appropriate method.

CO 3: Be able to design and solve simple models of CPM and queuing to improve decision making and develop critical thinking and objective analysis of decision problems

CO 4: Be able to solve simple problems of replacement and implement practical cases of decision making under different business environments.

CO 5: Enables to take best course of action out of several alternative courses for the purpose of achieving objectives by applying game theory and sequencing model.
Unit 1: Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models

Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: explain optimization techniques
 LO 2: explain inventory control models

Unit 2: Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: explain formulation of LP
 LO 2: understand parametric programming

Unit 3: Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: explain CPM/PERT
 LO 2: explain non-linear programming model

Unit 4: Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: explain scheduling
 LO 2: explain geometric programming

Unit 5: Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation.

Learning Outcomes: At the end of the unit, the student will be able to
 LO 1: explain competitive models
 LO 2: explain graph theory

References:
OPEN ELECTIVE
Composite Materials

Subject Code : MTRM – 3.2
III– Semester

Course educational Objectives: The objectives of this course is

CEO 1: Explain the behavior of constituents in the composite materials
CEO 2: Enlighten the students in different types of reinforcement
CEO 3: Develop the student’s skills in understanding the different manufacturing methods available for composite material.
CEO 4: Illuminate the knowledge and analysis skills in applying basic laws in mechanics to the composite materials.

Course Outcomes: At the completion of the course the student will be able to

CO 1: Explain the mechanical behavior of layered composites compared to isotropic materials.
CO 2: Apply constitutive equations of composite materials and understand mechanical behavior at micro and macro levels.
CO 3: Determine stresses and strains relation in composites materials.
CO 4: Identify, describe and evaluate the properties of fiber reinforcements, polymer matrix materials and commercial composites.
CO 5: Analyze the elastic properties and simulate the mechanical performance of composite laminates; and understand and predict the failure behavior of fiber-reinforced composites.

UNIT–I:

Learning Outcomes: At the end of the unit, the student will be able to
LO 1: explain composite materials
LO 2: explain functional requirements

UNIT – II:

Learning Outcomes: At the end of the unit, the student will be able to
LO 1: explain iso stress
LO 2: understand reinforcement

UNIT – III:

Learning Outcomes: At the end of the unit, the student will be able to
LO 1: explain liquid phase sintering
LO 2: understand manufacturing of metal matrix components

UNIT – IV:

Learning Outcomes: At the end of the unit, the student will be able to
LO 1: explain compression moulding
LO 2: explain polymer properties

UNIT – V:

Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

Learning Outcomes: At the end of the unit, the student will be able to
LO 1: explain strength
LO 2: explain stress concentrations.

TEXT BOOKS:

References:

Course educational Objectives: The objectives of this course is

CEO 1: To enable students to understand of the concept of Waste to Energy
CEO 2: To link legal, technical and management principles for production of energy form waste.
CEO 3: To learn about the best available technologies for waste to energy.
CEO 4: To analyze of case studies for understanding success and failures.

Course Outcomes: At the completion of the course the student will be able to

CO 1: Apply the knowledge about the operations of Waste to Energy Plants.
CO 2: Analyze the various aspects of Waste to Energy Management Systems
CO 3: Carry out Techno-economic feasibility for Waste to Energy Plants.
CO 4: Apply the knowledge in planning and operations of Waste to Energy plants.
CO 5: Apply Centralized and Decentralized Waste to Energy Plant

Unit-I:

Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors.

Learning Outcomes: At the end of the unit, the student will be able to

LO 1: explain waste as fuel
LO 2: explain conversion devices

Unit-II:

Learning Outcomes: At the end of the unit, the student will be able to

LO 1: understand biomass physics
LO 2: explain pyrolysis

Unit-III:

Learning Outcomes: At the end of the unit, the student will be able to
Unit-IV:

Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

Learning Outcomes: At the end of the unit, the student will be able to

- LO 1: understand biomass combustion
- LO 2: understand inclined grate combustors

Unit-V:

Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system - Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants – Applications - Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

Learning Outcomes: At the end of the unit, the student will be able to

- LO 1: understand biogas
- LO 2: explain properties of bio gas

References:

<table>
<thead>
<tr>
<th>Code</th>
<th>Name of the Subject</th>
<th>Periods/Week</th>
<th>Max. Marks</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTVL3.3</td>
<td>Dissertation- I / Industrial Project</td>
<td>-</td>
<td>100</td>
<td>100</td>
<td>10</td>
</tr>
</tbody>
</table>

IV-Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Name of the Subject</th>
<th>Periods/Week</th>
<th>Max. Marks</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTVL4.1</td>
<td>Dissertation-II</td>
<td>-</td>
<td>70</td>
<td>100</td>
<td>16</td>
</tr>
</tbody>
</table>