OBJECTIVES:
The course is designed to fulfill the following objectives

1. To provide exposure to students in gaining knowledge on concepts and applications leading to modeling of earth resources management using Remote Sensing

2. To acquire skills in storing, managing digital data for planning and development

3. To acquire skills in advance techniques such as hyper spectral, thermal and LiDAR scanning for mapping, modeling and monitoring.

PROGRAM OUTCOMES:

PO1. Fully equipped with concepts, methodologies and applications of Remote Sensing Technology.

PO2. Prepare the candidates for National and Global Employability

PO3. Acquire skills in handling instruments, tools, techniques and modeling while using Remote Sensing Technology

PO4. It empowers the candidate with confidence and leadership qualities.

PO5. Ability to analyse and interpret remote sensing data using various software and tools for image processing, classification, and visualization.

PO6. Understanding of the principles and techniques of remote sensing and GIS, including the theoretical and practical aspects of data acquisition, processing, and analysis.

PROGRAM SPECIFIC OUTCOMES:

PSO1. Ability to design and conduct independent research projects in remote sensing, including the formulation of research questions, data collection, analysis, and interpretation.

PSO2. Knowledge of the applications of remote sensing and GIS in various fields, such as agriculture, environmental monitoring, urban planning, and natural resource management.

PSO3. Awareness of the ethical, legal, and societal implications of remote sensing, including privacy and security issues, data access and ownership, and the responsible use of remote sensing data.
M.Tech. Remote Sensing course:

An applicant for admission into the M.Tech. Remote Sensing should have at least a second class with not less than 55% marks degree in either:

- B.E./B.Tech. in any Engineering
- OR
- Master’s degree in science

In the available number of seats, 50% are reserved for B.Sc. (Ag.)/B.E./B.Tech. Applicants. If sufficient number of eligible applicants is not available in either of the two groups, the eligible applicants from the other group are given admission to fill all the available seats in M.Tech. (Remote Sensing).

1. A) A regular course of study means attendance is not less than 75 per cent of lectures, practical, drawing exercises, workshop and practical and field and project work, if any, in such semester in such subject, according to the scheme of Instruction to be notified by the Head of the Institution, provided that in special cases for sufficient cause again the Vice-Chancellor may on the recommendation of the Principal, condone the deficiency in attendance, not exceeding 10 per cent, for reasons of ill health when the application is submitted at the time of the actual illness and is supported by an authorized Medical Officer approved by the Principal.

B) However, in the case of students, who participate in activities, such as NCC, Inter-University Tournaments, National Tournaments Inter University Courses, NSS and any such other activities deemed genuine by the Head of the Department Concerned, the period of their absence for the above purpose can be condoned by the Principal on the recommendation of the Head of the Department.

2. A) There shall be a written examination at the end of each of the first two semesters in the subjects offered in the respective semesters. B) The candidates should choose one elective from Elective-1 and Elective-2 in the first and second semester.

C) The candidates are required to submit, at the end of the fourth semester, three copies (as prescribed) of the dissertation on or before a date to be notified by the University from time to time, accompanied by three copies of an abstract summary, all of which will be retained by the University.

D) At the end of the third and fourth semesters, an evaluation of the dissertation there shall be viva-voce (preliminary) for 100 marks (1) and (2) in viva-voce for 100 marks on the dissertation and related subjects.

E) Marks for sessional work shall be allotted by the Teaching Staff of the college on the basis of class work, sli tests, practical works, etc., and the list of marks shall be sent to the Registrar, before the commencement of the written examination.

F) For taking the examination in the theory in any subject, candidates shall be required to obtain a minimum of 50 per cent in sessional work in that subject. Failing which, they shall be required to repeat the course in that subject in the subsequent semester in which they have failed.

G) Candidates who fail to secure the minimum prescribed marks in that subject will be permitted to continue the studies in the next semester. They shall, however, be required to pass the examination in the subject in which they have failed in the subsequent examination.

H) Candidates who have secured not less than 40 per cent in any of the theory papers and not less than 50 per cent of the total maximum marks of the theory paper and sessionals put together shall be declared to have passed the examination in that subject. In the case of subjects in which no written examination...
is prescribed, candidates should secure 50 percent of the marks allotted to each of these subjects.

3. A) The evaluation of Project work / Research work will be done by conducting viva voce examination at the end of third and fourth semester by a Board of Examiners consisting of:
 1. Head of the Department
 2. Chairman, Board of Studies
 3. The Internal Research Director
 4. One or two experts from outside the Department/University nominated by the Vice-Chancellor.

The dissertation shall be either “recommended” (with grades A, B, C), or “Not recommended” (with grade F stands for failed).

4. Candidates who have passed all the subjects of the course and secured not less than 60 per cent of the aggregate of marks, shall be declared to have passed in first class.

All the remaining successful candidates shall be declared to have passed in second class.

5. Candidates who fail in the subjects of any semester will be deemed to have been conditionally promoted. They shall however, have to appear and pass only in the subjects in which they have failed. Candidates have to take the examination in the subjects in which they have failed during these semesters, when the University conducts the examinations in those subjects.

6. The marks obtained will be converted to grades on a 10 point scale and then to Semester Grade point Average (SGPA) and subsequently Cumulative Grade Point Average is awarded at the end of the course by University.

Department of Geo-Engineering
M.Tech. Remote sensing
Scheme of Instructions and examination
(with effect from 2018-2019 academic year)

I-SEMESTER

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Course Title</th>
<th>Scheme of Instructions</th>
<th>Scheme of Examinations</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS1.1</td>
<td>Mathematics and Statistics</td>
<td>4 - 4 - 3</td>
<td>70 - 30</td>
<td>100 - 4</td>
</tr>
<tr>
<td>RS1.2</td>
<td>Principles of Remote Sensing</td>
<td>4 - 4 - 3</td>
<td>70 - 30</td>
<td>100 - 4</td>
</tr>
<tr>
<td>RS1.3</td>
<td>Principles of Photogrammetry and Photointerpretation</td>
<td>4 - 4 - 3</td>
<td>70 - 30</td>
<td>100 - 4</td>
</tr>
<tr>
<td>RS1.4</td>
<td>Earth Systems</td>
<td>4 - 4 - 3</td>
<td>70 - 30</td>
<td>100 - 4</td>
</tr>
<tr>
<td>CodeNo</td>
<td>CourseTitle</td>
<td>Scheme of Instruction</td>
<td>Scheme of Examinations</td>
<td>Total Credits</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>-----------------------</td>
<td>------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>RS1.5</td>
<td>Elective 1</td>
<td>4 - 4 - 3</td>
<td>70 - 30 - 100</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>A. Coastal Zone Management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. Natural Disaster Management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. Satellite Meteorology, Agriculture and Oceanography</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS1.6</td>
<td>Elective 2</td>
<td>4 - 4 - 3</td>
<td>70 - 30 - 100</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>A. Mathematical Morphology in Image Processing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. Water Resources Management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. Geoinformatics for Earth Science Applications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS1.7</td>
<td>Lab: 1 Photogrammetry and Photointerpretation practicals</td>
<td>- 3 3 3 3</td>
<td>50 50 100 2</td>
<td></td>
</tr>
<tr>
<td>RS1.8</td>
<td>Lab: 2 Remotesensing and Image Interpretation practicals</td>
<td>- 3 3 3 3</td>
<td>50 50 100 2</td>
<td></td>
</tr>
</tbody>
</table>

II SEMESTER

<table>
<thead>
<tr>
<th>CodeNo</th>
<th>CourseTitle</th>
<th>Scheme of Instruction</th>
<th>Scheme of Examinations</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS2.1</td>
<td>Digital Image Processing and Interpretation</td>
<td>4 - 4 - 3</td>
<td>70 - 30 - 100</td>
<td>4</td>
</tr>
<tr>
<td>RS2.2</td>
<td>Remote Sensing Applications</td>
<td>4 - 4 - 3</td>
<td>70 - 30 - 100</td>
<td>4</td>
</tr>
<tr>
<td>RS2.3</td>
<td>Geographic Information Systems</td>
<td>4 - 4 - 3</td>
<td>70 - 30 - 100</td>
<td>4</td>
</tr>
<tr>
<td>RS2.4</td>
<td>Advances in Remote Sensing</td>
<td>4 - 4 - 3</td>
<td>70 - 30 - 100</td>
<td>4</td>
</tr>
<tr>
<td>Code No.</td>
<td>Course Title</td>
<td>Scheme of Examination</td>
<td>Total Marks</td>
<td>Credits</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>-----------------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>RS 2.5</td>
<td>Elective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1A. Geoinformatics for Environmental studies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1B. Watershed Management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1C. Urban planning and information system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS 2.6</td>
<td>Elective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2A. Digital Photogrammetry and Mapping</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2B. Geoinformatics for Disaster management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2C. Spatial Database and GIS Modeling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS 2.7</td>
<td>Lab. 1 Digital Image processing practicals</td>
<td>Viva-Voce</td>
<td>100</td>
<td>12</td>
</tr>
<tr>
<td>RS 2.8</td>
<td>Lab. 2 GIS practicals</td>
<td>Viva-Voce</td>
<td>100</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 6 30</td>
<td></td>
<td>520 280 800</td>
<td>28</td>
</tr>
</tbody>
</table>

IIIrd SEMESTER

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Course Title</th>
<th>Scheme of Examination</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS 3.1</td>
<td>Dissertation (Preliminary)</td>
<td>Viva-Voce</td>
<td>100</td>
<td>12</td>
</tr>
</tbody>
</table>

IVth SEMESTER

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Course Title</th>
<th>Scheme of Examination</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS 4.1</td>
<td>Dissertation (Final)</td>
<td>Viva-Voce</td>
<td>100</td>
<td>12</td>
</tr>
</tbody>
</table>
SEMESTER I
RS1.1-Mathematics and Statistics

COURSE OBJECTIVES:
• To familiarize the students with the foundations of probability and statistical methods.
• To explain the concepts in random variables and several distributions in engineering applications.
• To teach the concepts of correlation, regression and estimations and their properties.
 • To explain the concept of testing of hypothesis for largesamples.
 • To impart knowledge on small sample tests

COURSE OUTCOMES:
After completion of the course, the student will be able to
• classify the concepts of Data Science and its importance(L2)
• apply discrete and continuous probability distributions
 • explain the association of characteristics through correlationand regression tools
 • identify the components of a classical hypothesis test
 • Use the statistical inferential methods based on small and large sampling tests

Unit-1 Fundamentals: Sets and Subsets, Sequences, Operations on Sets; Counting sequences, and subsets (permutations and combinations) Algorithms andPsudocode:Induction and Recursion: Division in the integers: Matrices

Unit-2 Relations and Digraphs; Product sets & Paths in Relations & Digraphs; Properties of Relations; Equivalence Relations; Computer Representation and Digraphs; Manipulation of Relations; Transitive closure and Warshall’s Algorithm.

Unit-3 a) Functions: Functions - The Pigeonhole principle; Permutations b) Trees & Languages Trees; Labeled Trees; Language; Context free languages and derivation trees. Ambiguity in context free grammar.

Unit-4 1) Measurement of Central Tendency, Mean, Mode, Median, Geometric mean and Harmonic Mean.
 2) Measures of variations
 Range, Quintile deviations, Mean deviation, Standard deviation and variance, Coefficient of variations.
 3) Probability concepts - Additions and multiplication laws, Basic problems on these laws. Concept of random variables and probability distribution

Unit-5 1) Theoretical distribution; Binomial, Poisson and normal with application.
 2) Correlation Analysis - Introduction, Karl Pearson’s Coefficient of Correlation, Auto-correlation.
 3) Regression Analysis - Linear regression analysis; Curve fitting concept of multiple regression analysis.
TextBooks

1) Statistics by S.P. Gupta
2) Statistical theory and methods by SANCHETI and Kapoor
3) Statistics by S.C. Gupta
RS1.2 Principles of Remote Sensing

COURSE OBJECTIVES
The Objective of the course is to
- Introduce the concept of remote sensing and its principles.
- Expose the various remote sensing platforms and sensors and to introduce the elements of data interpretation.
- Impart knowledge on data reception and corrections.
- Introduce thermal and microwave remote sensing techniques and their applications.

COURSE OUTCOMES
After completion of the course the student will be able to understand
- The characteristics of electromagnetic radiation and its interaction with earth features.
- The types and configuration of various satellites and sensors.
- The elements of data interpretation.
- Gain knowledge in Thermal and microwave remote sensing techniques.

 a) PLATFORMS AND SENSORS * Platforms: Types of platforms, ground, airborne, and space born platforms, Orbit of satellites, Kepler’s Law, satellite characteristics, satellites for Earth observations studies, and planetary missions (Chandrayana) * Sensors: Types and classification of sensors, imaging modes, Characteristics of optical sensors, sensor resolution - spectral, radiometric and temporal, Characteristics of detectors,

 Learning outcomes:
- Summarize the basic concepts of remote sensing and electromagnetic radiation
- Identify different platforms and sensors use in remote sensing

Unit-II a) Data reception, Data processing & Data generation: * Ground station, Data generation, Data processing & correction b) Radiometric and Geometric corrections * Radiometric corrections Random noise correction * Atmospheric correction, Geometric errors and corrections, * Distortion evaluated from tracking data, distortion evaluated from ground control Image correction. c) Ground Investigation in support of Remote sensing * Uses of ground data, calibration correction, Interpretation of properties, Training sets, Accuracy evaluation, test sites * Ground truth Instruments and spectral signature, * Spectral Reflectance and spectral signature of vegetation * Source of RS data: Global and Indian data products

Learning outcomes:
After completion of this unit the student will be able to
- Explain the concept of data generation and processing
• Explain various errors and corresponding corrections of satellite data

Learning outcomes:
After completion of this unit the student will be able to
• Explain basic principles of image interpretation
• Identify band formats and various data products

Learning outcomes:
After completion of this unit the student will be able to
• Outline the concept of thermal remote sensing and related physical principles
• Identify various applications of thermal remote sensing

Learning outcomes:
After completion of this unit the student will be able to
• Explain principles of microwave remote sensing and its applications
• Explain the concept of LiDAR and its components

List of Text Books
RS1.3 Principles of Photogrammetry and Photointerpretation

COURSE OBJECTIVES
The Objective of the course is to

- Introduce basic concepts of Photogrammetry.
- Impart knowledge on aerial photographic measurements.
- Introduce elements of image interpretation.
- Impart knowledge on digital photogrammetry, DEMs and contours.

COURSE OUTCOMES
At the end of the course the student will be able to understand

- Photographic process and characteristics of tools used in photogrammetry.
- Concepts of stereoscopy and geometry of various types of photographs.
- The process of Planning photogrammetric operations.

UNIT- I Fundamentals of Photogrammetry and Photointerpretation – types of photographs; Vertical photographs – principal point; scale; Stereoscopy; Vertical exaggeration – factors involved and determination; Overlap, sidelap and flight planning

Learning outcomes:
After completion of this unit the student will be able to

- Explain fundamentals of photogrammetry
- Identify different parameters of aerial photographs

UNIT-II Geometric elements of vertical aerial photographs; Relief Displacement on vertical aerial photographs; Parallax and parallax measurement – monoscopic and stereoscopic methods; Determination of horizontal ground length, direction and angles from photo coordinates;

Learning outcomes:
After completion of this unit the student will be able to

- Measure parallax from vertical photograph
- Determine ground length, directions and angles from photo coordinates.

UNIT-III Aerial mosaics: comparison with maps; Elements of aerial photointerpretation – (a) landforms; (b) surface drainage patterns; (c) erosion features, (d) graytones; (e) miscellaneous elements.

Learning outcomes:
After completion of this unit the student will be able to

- Compare aerial mosaics with maps
- Interpret earth surface features from photographs
UNIT - IV DigitalPhotogrammetry: definition and scope; Photographsand images; Geo-referencing – Interior orientation, exterior orientation; aerotriangulation – singleframe and block triangulation - pass points, tiepoints; ground control points; Satellite photogrammetry

Learning outcomes:
After completion of this unit the student will be able to
- Define digital and satellite photogrammetry
- Explain the concept of geo referencing and triangulation

UNIT - V 3-D surface modeling– DEMs, DSMs and DTMs; Triangulated irregular networks; Gridded surfaces; interpolation methods; Contour representation; Terrain visualization; DEM user applications.

Learning outcomes:
After completion of this unit the student will be able to
- Explain DEMs, DSMs and DTMs
- Identify applications of DEMs

Textbooks
2. Elements of Photogrammetry, Paul R. Wolf, McGraw-Hill, 2000
RS1.4-Earth Systems

COURSE OBJECTIVES
The objective of the course is to
• Introduce concept of Oceans, climate.
• Impart knowledge on meteorological parameters and their measurement.
• Give fundamental knowledge on Geomorphology.
• Impart knowledge on different landforms of earth.

COURSE OUTCOMES
At the end of the course the student will be able to
• Understand about ocean parameters and composition of atmosphere.
• Understand and measure meteorological parameters.
• Explain the concept of monsoon in Indian context.
• Identify different landforms.
• Understand soil forming process and classification of India soils.

Unit-1
a) Earth - Orbit, Rotation, Time
b) Oceans - Depth, Bottom relief
b) Oceans - Temperature, Salinity, Density of seawater
d) Oceans - Waves, Tides, Currents
e) Climate and the atmosphere – Origin, nature, composition and vertical division of the atmosphere.

Learning outcomes:
After completion of this unit the student will be able to
• Understand basic concepts of Earth, oceans
• Explain origin and composition of atmosphere

Unit-2
a) Meteorological parameters and their measurements
Geographical, seasonal and vertical distribution of temperature, pressure, wind and precipitation.
b) Solar and terrestrial radiation: Distribution in clear, cloudy and average conditions. Mean heat balance.
c) Weather disturbances: Air mass and Front, Cyclone and Anti-cyclone, Thunderstorm and tornado.
d) Weather analysis and Forecasting
e) Climate and agricultural factors in crop production.

Learning outcomes:
After completion of this unit the student will be able to
• Explain seasonal, geographical variations in temperature, wind and precipitation
• Identify different weather disturbances and weather forecasting methods

Unit-3
a) Climate Change: Causes and Impacts
b) Monsoons: Concepts of the origin of monsoon - Indian Monsoons
c) Fundamental concepts of Geomorphology
d) Weathering, Mass wasting and erosion.
Learning outcomes: After completion of this unit the student will be able to
- Explain causes and impacts of climate change
- Summarize the concept of geomorphology

Unit-4 a) Wind and associated land forms b) Seas and associated land forms c) Land forms associated with faults and folds d) Rivers and associated landformse) Glaciers associated land forms

Learning outcomes: After completion of this unit the student will be able to
- Identify landforms associated with wind, seas, rivers and glaciers

Unit-5 a) Soil forming processes, Soil profile, Soil components. b) Pedogenic regimes. c) Classification of soils d) Soilsof India

Learning outcomes: After completion of this unit the student will be able to
- Explain the concept of soil profile and soil forming process
- Recognize soils in Indian context

List of Textbooks
1. Structural Geology by Billings, M. 1984
2. Earth History & Plate Tectonics by Carl K. Seyfert, Leslie A. Sirkin
4. General Climatology by H. J. Critchfield
5. Physical Geology by Arthur Holmes
6. Physical Geography by Stahler
7. The Atmosphere by Frederick K. Lutgens and Edward J. Tarbuck
Syllabus for Elective Subjects
RS.1.5.Elective1
(Choose any one of the following)

A. CoastalZoneManagement
B. NaturalDisasterManagement
C. SatelliteMeteorology,AgricultureandOceanography

A. CoastalZoneManagement

COURSE OBJECTIVE
The objective of the course is to
- Introduce the importance of Coastal zone management.
- Impart knowledge on coastal landforms and river deltas.
- Give knowledge on coastal wetlands and sea level changes.
- Impart knowledge on different coastal hazards.

COURSE OUTCOMES
At the end of the course student will be able to
- Understand the importance of coastal zone management.
- Gain knowledge on deltas and other coastal landforms.
- Identify different coastal wetlands.
- Understand sea level changes and different coastal hazards.
- Gain knowledge on remote sensing application in coastal zone management.

Unit 1 Coastal and littoral zones – definitions and scope of study Shore zone processes – waves, tides and currents Coastal landforms; River deltas: types of deltas and their morphological variations Human activities and their impact on the delta-fringe coasts

Learning outcomes:
After completion of this unit the student will be able to
- Define coastal and littoral zones
- Identify types of river deltas and coastal landforms

Unit 2 Coastal wetlands – Mangrove swamps, marshes, lagoons, tidal channels/creeks and their significance in coastal stability and economic importance Continental margins – forms and processes; territorial waters and Exclusive Economic Zone Sea level changes – factors involved; effects of sea level oscillations on coastal zones Sea-level rise and coastal vulnerability; Role of geoinformatics in assessment of coastal vulnerability to sea-level rise

Learning outcomes:
After completion of this unit the student will be able to
- Identify different types of coastal wetlands
- Explain the effects of sea level on coastal zones
- Describe the role of geoinformatics in coastal vulnerability studies

Unit 3 Coastal Hazards: Storm surges and Tsunamis; Origin, propagation and run-up of tsunamis; Tsunami impact – role of coastal topography and vegetation; Global warming and Sea-level rise - impact on coastal zones; coastal vulnerability assessment Coastal hazard preparedness – coastal
Learning outcomes:
After completion of this unit the student will be able to

- Explain coastal hazards like Tsunamis and storm surges
- Recognize the effect of global warming on coastal zones

Unit 4 Human activity and coastal environment – deforestation, agriculture/aquaculture, pollution and coastal structures, and their effect on coastal zones; Coastal vegetation; shelter belts; Coastal aquifers; freshwater-seawater interface Morphology of Indian coasts

Learning outcomes:
After completion of this unit the student will be able to

- Infer the impact of human activities on coastal zones
- Understand the freshwater-seawater morphology in Indian coasts.

Unit 5 Coastal zone management – concepts, models and information systems Coastal Regulations Zones (CRZ) and Coastal Management Zones (CMZ): Indian context Application of remote sensing in coastal zone studies; Role of Geographic Information Systems in coastal zone studies

Learning outcomes:
After completion of this unit the student will be able to

- Explain the concept of coastal zone management
- Summarize the applications of RS & GIS coastal zone studies

Textbooks
2. Deltas, Coleman, J.M., Continuing Education Publication Co. Inc, 1976
5. Introduction to Marine Geology and Geomorphology, King, C.A.M., Edward Arnold, 1974
RS.1.5. Elective 1
Natural Disaster Management

COURSE OBJECTIVES
The objective of the course is to
- Introduce the concept of disasters and their classification.
- Impart knowledge on cyclones, earthquakes, Landslides.
- Explain the Components of disaster relief, disaster management policies.
- Impart knowledge on remote sensing and GIS applications in disaster management.

COURSE OUTCOMES
After the completion of the course, the student will be able to
- Classify various types of disasters and explain disaster management cycle.
- Explain the vulnerability scenario of India with respect to various disasters.
- Demonstrate the significance of disaster relief components, institutional arrangements.
- Apply the knowledge of geo-informatics, communication system in disaster Management.

Unit-1 Various types of Natural Disasters - Cyclones, Floods and Tidal waves with most well known Indian examples, Classification of Disasters and nature of Impacts.

Learning outcomes:
After completion of this unit the student will be able to
- Classify various types of disasters
- Explain cyclones and floods with Indian examples

Unit-2 Various types of Natural Disasters - Earthquakes, land subsidence and Landslides, Forest fires, Drought with most well known Indian examples, Classification and nature of impacts.

Learning outcomes:
After completion of this unit the student will be able to
- Explain about earthquakes, landslides and droughts

Unit-3 Vulnerability factors and Risk analysis of Natural disasters and Hazard estimations.

Learning outcomes:
After completion of this unit the student will be able to
- Classify vulnerability factors of natural disaster
- Analyze the risk factor of natural disasters.

Unit 4 Natural disaster management plans, Shelterbelts, Special structures, Disaster preparedness and Mitigation.

Learning outcomes:
After completion of this unit the student will be able to

- Explain disaster management cycle
- Identify different disaster management activities

Unit-5 Information needs of Disaster management, Remote Sensing Applications, GIS Applications

Learning outcomes:
After completion of this unit the student will be able to

- Explain the role of Remote sensing and GIS applications in disaster management

References
1. Krishna Prem & Bhanfari, N.M. (1967): Risk assessment due to strong Wing storms/Cyclones and preventive measures for Habitat Buildings; Proceedings volume 1 of International Conference on Habitat and Sustainable Development, December 1-2-1997 organized by Institute of Engineers (India) and World Federation of Engineering Organisations.

2. Vijay, P.B. Kurian, Jose and Mittal, A.K. (1997): An overview on the Earthquake mitigation scenario in India; Proceeding volume-1 of International Conference on habitat and Sustainable Development, December 1-2-1997 organized by Institute of Engineers (India) and World Federation of Engineering Organisations.

RS.1.5. Elective1
Satellite Meteorology, Agriculture and Oceanography

COURSE OBJECTIVES
The objective of the course is to
• Introduce the basic concepts of Remote Sensing of atmosphere and satellite meteorology.
• Gain the knowledge on meteorological applications in weather forecasting aviation and trade applications.
• Familiarize the Indian Meteorological satellites and sensors.
• Impart knowledge on crop identification and assessment techniques.
• Introduce ocean remote sensing concept.

COURSE OUTCOMES
At the end of the course the student will be able to understand
• Concepts of satellite meteorology and satellite sensors useful for the same.
• The applications of meteorological studies in resource management, disaster management.
• Interpret meteorological satellites images for weather systems and clouds.
• Monitor ocean parameters through satellite images.

Unit-1
1. Fundamentals of Remote Sensing in Meteorology
2. Meteorological satellite characteristics and their orbits, TIROS, NIMBUS, NOAA, TIROS N, SEASAT, GOES, METEOSAT, INSAT, OCEAN SAT. Role of LANDSAT, SPOT and IRS in collecting meteorological, agricultural and oceanographic data.
4. Atmospheric temperature retrieval techniques and surfaceradiationstudies.
5. Wind measuring techniques from satellite data.

Learning outcomes:
After completion of this unit the student will be able to
• Explain fundamentals of meteorological remote sensing
• List out different meteorological satellite and their characteristics
• Measure Atmospheric temperature and wind from satellite data

Unit-2
1. Cloud classification techniques
3. Interpretation of Satellite meteorological images for weather systems and cyclones.
5. Spectral behavior of different crops and vegetation in VIS, NIR, MIR, TIR and Micro-waveregions.

Learning outcomes:
After completion of this unit the student will be able to
• Describe various cloud classification techniques and rainfall monitoring methods
Estimate soil moisture and evapotranspiration from remote sensing techniques

Learning outcomes:
After completion of this unit the student will be able to
- List out various principles of crop identification and yield monitoring using RS
- Explain the remote sensing applications in water resource monitoring

Unit-4 1. Principles of Remote Sensing of Sea 2. Visible wavelength ocean- color sensors: introduction to color sensors on Landsat, Coast zone colors scanner (CZCS) on Nimbus, application and oceanographic uses of Landsat and CZCS data. 3. Introduction to infrared scanning radiometers, atmospheric correction and Sea - Surface temperature calibration techniques, interpretation and uses of SST data from satellites. 4. Passive microwave radiometers: Physical principles of passive microwave radiometry, microwave radiometer design and oceanographic interpretation of microwave data.

Learning outcomes:
After completion of this unit the student will be able to
- Explain remote sensing principles of oceans
- List out different ocean monitoring satellites

Learning outcomes:
After completion of this unit the student will be able to
- Explain the concept of satellite altimetry and its applications
- Define SAR and identify its applications in ocean related studies

List of Textbooks
4. Remote Sensing in Water Management in Command Areas, Govardhan, V.
Reference Books

5. Environmental satellites; systems data interpretation and applications, Jimmie D. Johnson, Frances C. Parme nter, Ralph Anderson, Department of Commerce, NOAA.
RS.1.6. Elective.2
(Choose any one of the following)
A. MathematicalMorphologyinImageProcessing
B. WaterResourcesManagement
C. GeoinformaticsforEarthScienceApplications

A. MathematicalMorphologyinImage Processing

COURSE OBJECTIVES
The objective of the course is to

- Impart knowledge on the basics of mathematical morphology
- Introduce morphology transformations and algorithm for image processing
- Impart knowledge on morphology based classification and segmentation techniques
- Discuss recent advances in mathematical morphology and its applications

COURSE OUTCOMES
After completion of the course student will be able to

- Explain basics of mathematical morphology
- Gain knowledge in morphological algorithms for image processing
- Performs morphology based image classification and segmentation

Unit 3: Morphology based Image Classification & Applications Binary and Grey level image segmentation-Skeletization by Zone of Influence Technique-Watershed segmentation technique-Watersnakes and PDE based-Textural segmentation-Applications of segmentation techniques in remotely sensed dataclassification-Segmentation of SPOT, RADARSAT, ERS SAR, and IRS data- Morphology based noise removal techniques for Microwave remote sensing dataanalysis-Granulometriesfor feature analysis MorphologyforDEManipulationandterraincharacterization

Unit 4: Shape Representation by morphology and shape description Exact dilations-Distance-transformations-Exact distance transforms through exactdilations-VornoiDiagrams(GraphTheory)-Scalespaceskeletonization-Multi-scalemorphologicaltransformations-ShapeCharacterization-Perimeter-area-
Centroid- Maximal and minimal distances to centroid- Distance to the boundary-Diameter- Maximum chord-Polygonal approximation based shape decomposition-Patternspectrumprocedure.

Unit 5: Recent Advances in Mathematical Morphology in Image processing and analysis Fuzzy Morphology-Watersnakes and PDE based morphology,Energy minimization concepts-Theoretical graylevel morphology-Lattice theory-Discrete topology and metricsfor image processing-nonliner image filtering-connected operators-geometrical scale space-topographical sgmentation-random sets and geometrical probability-integral geometry and geometrical measures-morphologyapplicationsin imagesciences.

References:

SuggestedReading

1. Gonzalez, DigitalImageProcessing
RS.1.6. Elective2
Water Resources Management

COURSE OBJECTIVES
The objective of the course is to
- Expose student to different issues in watershed management.
- Impart knowledge on soil related studies.
- Impart knowledge on rainfall and run-off.
- Impart knowledge on integrated water management in Agriculture.

COURSE OUTCOMES
After completion of the course the student will be able to
- Understand importance of watershed management and characteristics.
- Estimate rainfall and runoff in catchments.
- Gain knowledge on integrated water management in Agriculture.

Unit-1 (Watershed Concept)
a) Issues in watershed management - land degradation, agricultural productivity, reservoirs sedimentation, depletion of bioresources, floods and droughts. Principles and approaches - principles of watershed management, different approaches in watershed management; Problem oriented approach, three dimensional approaches, integrated approach, steps in watershed management. b) Watershed characteristics - size, shape, physiography, slope, climate, drainage, land use, vegetation, geology, soils, hydrology, hydrogeology, socio-economics. Linear aspects of channel systems - Aerial aspects of drainage basins.

Learning outcomes:
After completion of this unit the student will be able to
- Explain the principles of watershed management
- Describe watershed characteristics

Unit-2 (Land Management)

Learning outcomes:
After completion of this unit the student will be able to
- Explain basic soil surveying techniques
• Describe land degradation problem and its mitigation

Unit-3 (Water Management) a) Surface water - Study of rainfall, estimation of run-off at micro catchments, stream gauging; Rainwater harvesting; catchment, harvesting, harvesting structures, groundwater - exploration of canal command areas, potential areas; integrated water resources management, conjunctive use. b) Dry land Agriculture - Runoff agriculture, micro catchment forming, irrigation with saline water, reusing water, conserving water, sprinkler irrigation, drip irrigation, pot irrigation, other systems, reducing cropland percolation losses, reducing transpiration losses, selection of water use efficiency crops.

Learning outcomes:
After completion of this unit the student will be able to
• Estimate rainfall and run-off in micro catchments
• Explain dry land agriculture methods

Unit-4 (Integrated Management) a) Agriculture - Crop husbandry, soil enrichment, inter mixed and strip cropping, cropping pattern; sustainable agriculture, hybrid and improved seeds; Biomass management, crop rotation, legumes, organic fertilization, spider farming, pastures and silvipastures; horticulture, tree culture; form forestry; bund utilization, boundary plantation; social forestry; Energy - Renewable resource, water power, solar energy wind power; biomass, firewood, synthetic fuels, burning of municipal / garbage, ocean tides and waves. b) Appropriate Technology - farm equipment; Contour methods; check dams, water catchment and harvesting; kunds, depression harvesting, harvesting below ground level, harvesting below stream bed level, ground water harvesting; low cost technology, water conservation, utilization of wasted natural resources, Novelities; Rural technological delivery systems, cultivating wasted lands, tree culture, farm forestry, silvipastures, horticulture, social forestry, afforestation, wonder ways.

Learning outcomes:
After completion of this unit the student will be able to
• List out different farming techniques

Unit-5 (Monitoring and Evaluation) a) People’s Part - awareness, participation, Response; State and integrated approach, appreciation of the concept, training, transfer of technology, resource and development, Agro-industrial infrastructure; sustainable society, livestock, small animal farming, pisciculture, sericulture, Health and hygiene education, transport, cues. b) Monitoring and Evaluation - purpose of monitoring and evaluation, nature of monitoring and evaluation - an interative dynamic Process, design of monitoring programs - determining information needs, setting information needs priorities, determining means of collecting information, Information management in monitoring programs; monitoring biophysical data, monitoring socio-economic data, monitoring project activities and outputs, design of evaluation procedures, types of evaluation, focus of evaluation, reporting evaluation results, insuring use of monitoring and evaluation information, a final word of caution.

Learning outcomes:
After completion of this unit the student will be able to
• Realize the importance of people’s participation in water resources management
• Collect information and prepare evaluation reports
TextBooks and References

RS.1.6. Elective2
B. Geoinformatics for Earth Science Applications

COURSE OBJECTIVES
The objective of the course is to
- Impart knowledge on Remote sensing applications in Lithological studies.
- Gain knowledge in remote sensing applications in Geological structures.
- Familiarize with geospatial applications in Geomorphology.
- Impart knowledge on RS & GIS techniques in Geological investigations.

COURSE OUTCOMES
After completion of the course the student will be able to
- Explain remote sensing applications in Lithological studies.
- Understand the importance of Remote sensing in Geomorphological studies.
- Explain Remote sensing applications in Geological investigations.
- Gain knowledge on remote sensing application in disaster management.

Unit–I: Remote sensing applications in lithological studies
Introduction; Scope for Geological applications in multispectral data, Thermal Data, Microwave data Mapping of Broad scale Lithological Units in General, Igneous, sedimentary and metamorphic rock, Identification of Mineral Assemblage, their physical properties mode of origin and mode of occurrence; Lithological mapping using aerial photos and satellite imagery, Digital analysis for lithological discrimination

Learning outcomes:
After completion of this unit the student will be able to
- Identify the scope of remote sensing data in geological studies
- Prepare lithological maps using aerial and satellite imagery

Unit – II: Remote Sensing applications in structural analysis

Learning outcomes:
After completion of this unit the student will be able to
- Explain remote sensing application in study of folds and faults
- Prepare structural analysis through aerial and satellite imagery.

Unit–
III: Remote sensing applications in geomorphology
Nature and type of landforms like denudational, structural, fluvial, marine, Aeolian, Glacial and volcanic

Learning outcomes:
After completion of this unit the student will be able to
- Explain remote sensing applications in Geomorphological studies
- Interpret satellite and aerial imagery to identify aeolian, volcanic and marine landforms.

Learning outcomes:
After completion of this unit the student will be able to
- Explain remote sensing applications in Geological investigations and mineral exploration
- Describe the importance of RS & GIS in Disaster management

Unit-V: Engineering and Sub-surface exploration & Disaster Assessment
Engineering geological Investigations: river valley projects, dams and reservoirs, route location (high ways and Rail ways) canal and pipeline alignments; neotectonism, seismic hazard and damage assessment, local ground condition, disaster assessment, volcanic and geothermal Energy applications, volcanic mapping and monitoring, identification of coal fires; environmental geology Resistivity, aeromagnetic and electromagnetic survey for subsurface explorations

Learning outcomes:
After completion of this unit the student will be able to
- Explain the importance of geospatial technologies in sub surface exploration
- Explain application of RS & GIS in various civil engineering projects

Textbooks
Ravi P. Gupta, Remotesensing Geology - Springer Publisher, A1 Books Co. in.
COURSE OBJECTIVES
The objective of the course is to
- Familiarize student in calculation of height, scale etc from aerial photographs.
- Impart knowledge on identification of features from aerial photographs.
- Train student in preparing aerial mosaics.
- Train student in extracting contours, drainage etc from DTMs.

COURSE OUTCOMES
After completion of the course the student will be able to
- Determine vertical exaggeration from aerial photograph.
- Calculate height, scale from aerial photos.
- Interpret aerial photographs to identify different landforms.
- Construct digital terrain models.
- Extract contours, watershed and drainages from DTMs.

PG.1. Testing stereovision
PG.2. Use of Lens stereoscope and Mirror stereoscope
PG.3. Determination of vertical exaggeration
PG.4. Use of Parallax Bar for height calculation from aerial photographs
 PG.5. Calculation of scale of the photographs, Marking Principal point and conjugate principal point on the stereopairs
PG.6. Preparation of aerial mosaics
 PG.7. Interpretation of aerial photographs for identification of landforms of fluvial, Aeolian, glacial, coastal, volcanic and arid processes
PG.8. Identification of tectonic elements from aerial photographs
 Digital photogrammetry – digital image matching and collection of mass points
 Construction of digital terrain models
 Application of DTMs – contour generation, fill, flythrough, slope and aspect, viewshed analysis, watershed and drainage extraction, volumetric analysis, preparation of orthoimages.
RS.1.8Lab. 2: Remote Sensing & Image Interpretation

COURSE OBJECTIVES
The objective of the course is
- Train student in satellite image annotation
- Impart knowledge on different spectral response patterns.
- Train student in studying and interpretation of optical, thermal and RADAR imagery.
- Train student in interpreting high resolution imagery.
- Impart knowledge on ground data validation.

COURSE OUTCOMES
After completion of the course the student will be able to
- Study and understand annotation of satellite images.
- Understand spectral response pattern of different land cover features.
- Understand and Interpret Optical, Thermal and RADAR imagery.
- Interpret high resolution satellite imagery.

RS.P1 Study of Satellite Image Annotation (information) LANDSAT, SPOT and IRS and Referencing Scheme (Analog)
RS.P2 Study of Digital Referencing Scheme (NRSC/Digitalglobe/space imaging etc).
RS.P3 Understanding of Spectral Response Pattern of different Land cover objects 1 & 4
RS.P4 Study of Given Area in B/W, Colour and IR colour Photographs (IKONOS Area)
RS. P5 Study of Satellite Imagery (B/W) in Different bands and Visual Interpretation (Landsat 6 band data for Visakhapatnam)
RS.P6 Study of Thermal Image, Interpretation of Various Features -
RS.P7 Study of Radar (Microwave) Imagery and Interpretation of Features
RS.P8 Study of Radar And SAR (Microwave) Imagery And Interpretation of Features -
RS.P9 Interpretation of Cultural Details From high resolution imagery
RS.P10 Digital Interpretation and preparation of Land use Map at 1:50,000 scale
RS.P11 Field exercise on visual Image interpretation and validation using ground data
SEMESTER II

RS2.1-Digital Image Processing and Interpretation

COURSE OBJECTIVES
The objective of the course is to
- Study the image fundamentals and mathematical transforms necessary for image processing.
- Impart knowledge on image processing.
- Study the image enhancement techniques.
- Study image restoration procedures.
- Familiarize with image classification and change detection methods.

COURSE OUTCOMES
After successful completion of the course the student will be able to
- Review the fundamental concepts of a digital image processing system.
- Evaluate the techniques for image enhancement and image restoration.
- Categorize various compression techniques.
- Interpret image segmentation and classification techniques.

Unit 1
a) Introduction - Image processing displays systems.
 b) Initial statistical extraction - univariate and multivariate statistics, histogram and its significance in remote sensing data.
 c) Preprocessing - Introduction, missing scan lines, desk tripping methods, geometric correction and registration, atmospheric corrections, illumination and view angle effects

Learning outcomes:
After completion of this unit the student will be able to
- Define digital image processing
- Explain various pre-processing techniques in image processing

Unit 2
a) Image reduction, image magnification, contrast enhancement; linear, non-linear, rationing, edge enhancement; linear, non-linear. low pass filters, high pass filters, edge detection, point and neighborhood operation
b) Image transform - Arithmetic operations’ based image transforms, principle component analysis, discriminate analysis, Fourier transforms, Fast Fourier frequency domain filters and vegetation indices.

Learning outcomes:
After completion of this unit the student will be able to
- Explain image enhancement techniques
- Describe image transformation and principal component analysis concepts

Unit 3
a) Image compression fundamentals: Coding, interpixel and psychovisual redundancy, and fidelity criteria.
b) Image compression models: Source encoder and decoder, channel encoder decor

Learning outcomes:
After completion of this unit the student will be able to
- Explain image enhancement techniques
- Describe image transformation and principal component analysis concepts

b) Elements of information theory: Measuring information, the information channel fundamental coding theorems and using information theory.
Learning outcomes:
After completion of this unit the student will be able to

- Explain fundamentals of image compression

Unit-4
a) Image segmentation: Detection of points, lines and edge detection and combined detection
b) Edge linking and boundary detection: Local processing, Global processing via Hough transform
c) Thresholding: foundation, role of illumination, simple global thresholding, optimal thresholding. Split and merge and Texture based Segmentation.

Learning outcomes:
After completion of this unit the student will be able to

- Identify edges in digital images through various methods
- Understand the concepts of image segmentation

Unit-5
a) Classification - Geometrical basis of classification, unsupervised classification, supervised classification techniques - training sample selection, parallelepiped classifier, centroid classifier, maximum likelihood method, Hybrid methods and decision tree classifiers. Use of external data, contextual information, feature - sub-feature study, classification accuracy.
b) Change detection - the nature of change detection, change detection algorithms, image differencing, and image ratiocination and classification comparisons.
c) Hyper spectral remote sensing, Imaging Spectroscopy, Data Processing techniques-N-Dimensional Scatter plots, Spectral angle mapping, Spectral mixture analysis

Learning outcomes:
After completion of this unit the student will be able to

- Explain different image classification methods
- Describe change detection techniques

List of Textbooks
RS2.2-Remote Sensing Applications

COURSE OBJECTIVES

The objective of course is to

- Introduce the potentials and limitations of remote sensing applications in various domains.
- Impart knowledge on Remote sensing applications in Resource mapping.
- Impart knowledge on Remote sensing applications in Urban planning.
- Familiarize with water resources relates application of remote sensing.
- Impart knowledge on RS applications in Disaster management.

COURSE OUTCOMES

After completion of the course the student will be able to

- Understand the importance of remote sensing applications.
- Gain knowledge in remote sensing applications in resource mapping.
- Explain applications of remote sensing in Urban planning.
- Apply geospatial technology for water resource mapping and monitoring.
- Gain knowledge in applying remote sensing technology in disaster management.

Unit-1

Learning outcomes:
After completion of this unit the student will be able to

- Explain the potentials and limitations of remote sensing
- Elaborate the applications of remote sensing in Natural resource evaluation

Unit-2

Applications in land use and land cover analyses 1. Land use classification principles and systems 2. Mapping and monitoring of land use/land cover and regional planning 3. Urban land use, Urban sprawl and urban planning.

Learning outcomes:
After completion of this unit the student will be able to

- Identify different land use classification systems
- Summarize the remote sensing applications in Urban planning

Unit-3

Learning outcomes:
After completion of this unit the student will be able to

- Explain mapping and monitoring methods of water resources using remote sensing

Unit-4

Coastal and nearshore applications 1. Satellite sensors for Coastal zone environment 2. Coastal landforms and evolution 3. Coastal dynamics and shoreline changes and Coastal wetlands
Learning outcomes:
After completion of this unit the student will be able to

- Identify different satellite sensors for coastal zone management
- Explain RS applications in various coastal zone activities

Unit - 5
Environmentaland disaster management applications
1. Mapping and monitoring of Natural hazards
 a) Cyclones/floods
 b) Droughts
 c) Landslides
 d) Volcanoes
 e) Earthquakes
2. Analysis of human-induced hazards
 a) Deforestation
 b) Erosion
c) Siltation

Learning outcomes:
After completion of this unit the student will be able to

- Explain the applications of remote sensing in Disaster management
- Summarize remote sensing applications in Human induced hazards.

Textbooks
2. Remote Sensing in hydrology, Engman, E.T. Gurney, R.J.
3. Remote Sensing in water management in command areas, Govardhan, V.

Reference Material
RS2.3-Geographic Information Systems

COURSE OBJECTIVES
The Objective of the course is to
- Familiarize about the concept of GIS, its components, along with its advantages.
- Focus about different available data formats in GIS.
- Impart knowledge on spatial data structures details and input, management and output processes.
- Explain different data analysis techniques.
- Impart knowledge on latest technological trends in the field.

COURSE OUTCOMES
After completion of the course the student will be able to
- Gain knowledge in the basics of GIS and its components.
- Learn about types of GIS data, data inputting and errors.
- Gain knowledge in raster and vector based spatial data analysis in GIS.
- Learn about latest technological developments in GIS.

Unit-1: Fundamentals of GIS
a) Introduction to GIS, Understand the difference between GIS and information system in general, GIS components and function of GIS: hardware software requirement of GIS, data types and spatial data models, idea of conceptual, logical and physical models, RDBMS, data basenormalizationRepresentationofrealworld via vector and rasterrepresentation model.
b) Definition of map geographic data in the computer. File and data processing, data base structures, perceived structures and computer representation and geographical data. Raster data structure, Vector data structures forgeographicalentities.

Learning outcomes:
After completion of this unit the student will be able to
- define terms and concepts related to GIS
- Classify and explain different components of GIS

Unit-2: Data input and Quality verification
a) Data input, verification, storage and output: Data input, data verification, and correction and storage data output; data user interfaces. b) Data Quality, Errors and Natural Variation: Sources of error, Errors resulting from natural variation of from original measurements. Errors arising through processing, problem; and errors arising from overlay and boundary intersections. Errors resulting room rasterizing a vector map. Errors associatedwithoverlayingtwo or more polygonnetworks. Thenatureof boundaries. Thestatistical nature of boundaries. Combining attributes from overlaid maps.

Learning outcomes:
After completion of this unit the student will be able to
- Explain about data imputing in GIS
- Identify different errors in GIS data to improve data quality.

Unit-3DEM&MapProjections
a) Digital Elevation Models: The need of DEMs, methods of representing DEMs. Image methods, data sources and sampling
methods for DEMs. Products that can be derived from a DEM. Automated landform delineation from DEMs. b) Map projections in GIS.

Learning outcomes:
After completion of this unit the student will be able to
- Explain about map projections in GIS
- Extract data products from DEMs

Unit-4

Data Analysis

Learning outcomes:
After completion of this unit the student will be able to
- Learn about spatial data analysis in GIS
- Explain raster and vector data analysis

Unit-5

Technological trends in GIS

a) Tools for Map analysis: Single maps, Map reclassification, operations and attribute tables, spatial topological and geometric modeling and operations on spatial Neighborhood. Tools for map Analysis: Map pairs, map overlay and map modeling correlation between two maps. Tools for map analysis: Multiple maps, types of models, Boolean logic models, Index overlay models, Fuzzy logic methods. b) GIS customization, Data warehousing, cloud GIS, data mining, OLAP, SDSS, distributed, parallel and GPU, spatial data infrastructure, (i.e. integration and standards etc.,) Free and open source tools and web resources, Introduction to spatial decision problems, GIS and decisions support system, overview of Internet GIS, Location based services.

Learning outcomes:
After completion of this unit the student will be able to
- Identify different GIS based tools for map analysis
- Explain about Internet GIS and latest technological developments in GIS

List of Text Books

2. www.earthmapping.com/
COURSE OBJECTIVES
The objective of the course is to
- Teach basics of hyperspectral remote sensing.
- Impart knowledge on hyperspectral sensors and data analysis.
- Explain the concept of LIDAR systems and LIDAR data analysis.
- Impart knowledge on GPS.
- Familiarize with application of hyperspectral, LIDAR and GPS data.

COURSE OUTCOMES
After completion of the course the student will be able to
- Comprehend the basics of hyperspectral, LIDAR and GPS.
- Process and interpret hyperspectral, LIDAR datasets.
- Utilize skills obtained for different applications of hyperspectral, LIDAR remote sensing.

Unit-1
1. Introduction to Hyperspectral Remote Sensing
2. Spectral consideration
3. High resolution spectral features
4. Hyperspectral sensors

Learning outcomes:
After completion of this unit the student will be able to
- Define hyperspectral remote sensing
- List out different hyperspectral sensors and their features.

Unit-2
1. Airbornehyperspectralsensors
2. Spacebornehyperspectralsensors
3. Processingofhyperspectraldata
4. Proceduresofdataanalysis

Learning outcomes:
After completion of this unit the student will be able to
- Identify airborne and spaceborne sensors
- Analyze hyperspectral data

Unit-3
1. Principles of LIDAR
2. Laser and scaningsystem
3. ExtractionofDSM
4. AnalysisofLIDARdata

Learning outcomes:
After completion of this unit the student will be able to
- Explain principles of LIDAR system
- Extract DSM from LIDAR data.

Unit-4
1. FundamentalconceptofGPS
2. Varioussegmentsofobservationprinciples
3. Structure, basicconceptofGP
Classification of GPS receivers.

Learning outcomes:
After completion of this unit the student will be able to
- Define fundamental concepts of GIS
- Explain GPS components and classify GPS receivers

Unit-51. Application of hyperspectral remote sensing 2. LIDAR derived vegetation 3. LIDAR derived urban environment 4. Application of GPS in surveying and resource inventory

Learning outcomes:
After completion of this unit the student will be able to
- List out applications of hyperspectral remote sensing
- Summarize application of GPS in surveying

TextBooks
4. Manual on GPS - Canada GPS Publication
R.S.2.5Elective-I
(Choose any one of the following)

A. GeoinformaticsforEnvironmentalstudies;
B. Watershed Management;
C. Urban Planning and Information Systems

A. GeoinformaticsforEnvironmentalStudies

COURSE OBJECTIVES:
The objective of the course is to
- Impart knowledge on RS applications in water and soil studies
- Explain about impacts of pollution on environment
- Impart knowledge on RS application in environmental monitoring
- Give more insight into environment protection with case studies.

COURSE OUTCOMES
After successful completion of the course the student will be able to
- Explain Remote sensing applications in water quality monitoring
- Realize the effect on pollution on environment
- Gain knowledge on marine environment monitoring using remote sensing
- Measure meteorological parameters like temperature, wind etc..

Learning outcomes:
After completion of this unit the student will be able to
- Explain the importance of remote sensing in monitoring water quality parameters
- Study soil erosion and degradation using RS & GIS

Learning outcomes:
After completion of this unit the student will be able to
- Identify the negative effects of industrial pollution
- Explain how solid waste effects the environment

Learning outcomes:
After completion of this unit the student will be able to
- List out sensors used for marine environment monitoring
- Explain RADAR techniques for ocean monitoring
- Determine sea surface temperature from satellite data

Learning outcomes:
After completion of this unit the student will be able to
- Recall remote sensing techniques for air quality monitoring
- Measure atmospheric temperature and composition from meteorological data.

Unit –V Case studies River pollution – the case of Ganga River Air Pollution in Delhi; Mathura Refinery and Taj Mahal; Marine pollution in Visakhapatnam; Urbanization and its impact on Visakhapatnam city environment

Learning outcomes:
After completion of this unit the student will be able to
- Gain more insight into river and marine pollution with some case studies
- Explain the effect of Urbanization on any study area

References
B. Watershed Management

COURSE OBJECTIVES
The objective of the course is to
- Expose student to different issues in water shed management.
- Impart knowledge on soil related studies.
- Impart knowledge on rainfall and run-off.
- Impart knowledge on integrated water management in Agriculture.

COURSE OUTCOMES
After completion of the course the student will be able to
- Understand importance of watershed management and characteristics.
- Estimate rainfall and runoff in catchments.
- Gain knowledge on integrated water management in Agriculture.

Unit-1 (Watershed Concept) c) Issues in watershed management - land degradation, agricultural productivity, reservoir sedimentation, depletion of bioresources, floods and droughts. Principles and approaches - principles of watershed management, different approaches in watershed management; Problem oriented approach, three dimensional approaches, integrated approach, steps in watershed management.

Watershed characteristics - size, shape, physiography, slope, climate, drainage, land use, vegetation, geology, soils, hydrology, hydrogeology, socio-economics. Linear aspects of channel systems - Aerial aspects of drainage basins.

Learning outcomes:
After completion of this unit the student will be able to
- Explain the principles of watershed management
- Describe watershed characteristics

Learning outcomes:
After completion of this unit the student will be able to
- Explain basic soil surveying techniques
- Describe land degradation problem and its mitigation

Unit-3 (Water Management) c) Surface water - Study of rainfall, estimation of run-off at micro
catchments, stream gauging; Rainwater harvesting catchment, harvesting, harvesting structures, Groundwater exploration of canal command areas, potential areas; integrated water resources management, conjunctive use.

d) Dry land Agriculture- Runoff agriculture, micro catchment forming, irrigation with saline water, reusing water, conserving water, sprinkler irrigation, drip irrigation, pot irrigation, other systems, reducing crop land percolation losses, reducing transpiration losses, selecting water use efficiency crops.

Learning outcomes:
After completion of this unit the student will be able to
- Estimate rainfall and run-off in micro catchments
- Explain dry land agriculture methods

Unit-4 (Integrated Management) c) Agriculture - Crop husbandry, soil enrichment, inter, mixed and strip cropping, clopping pattern; sustainable agriculture, hybrid and improved seeds; Biomass management, crop rotation, legumes, organic fertilization, spider farming, pastures and silvipastures; horticulture; treeculture; form forestry; bund utilization, boundary plantation; social forestry; Energy - Renewable resource water power, solar energy wind power; biomass, fire foodsynthetic fuels, burning of municipal / garbage, ocean tides and waves. d) Appropriate Technology - Farm Equipment; Contour Methods; Check Dams, Watercatchment and Harvesting, Kunds, Depression Harvesting, Harvesting below ground level, Harvesting below stream bed level, Ground water harvesting; low cost, technology, Water Conservation, Utilization of Wasted Natural Resources, Novelties; Rural Technological Delivery Systems, Cultivating Wasted Lands, TreeCulture, FarmForestry, Silvipastures, horticulture, Social forestry, afforestation, wonder ways.

Learning outcomes:
After completion of this unit the student will be able to
- List out different farming techniques
- Gain knowledge on groundwater harvesting techniques

Learning outcomes:
After completion of this unit the student will be able to
- Realize the importance of peoples participation in water resources management
- Collect information and prepare evaluation reports

TextBooks and References

C-Urban Planning and Information Systems

COURSE OBJECTIVES
The objective of the course is to
- Introduce the concept of urban planning and its history in Indian context.
- Impart knowledge in urban planning components.
- Familiarize with geospatial application in urban planning.
- Impart knowledge on aspect of transportation planning.

COURSE OUTCOMES
After completion of the course the student will be able to
- Gain knowledge in Urban planning and its history.
- Understand the concepts of zoning, master plans etc.
- Use different GIS techniques and data types to assess urban planning problems.
- Gain knowledge in transportation studies in urban context.

Unit I
Introduction Planning: background and principles; Need for planning; Urbanisation and its impact; Distribution of land use/land cover; Town planning in ancient India and new towns of India; Requirements and possible types of development of towns; Geoinformatics application in Urban Planning

Learning Outcomes
After completion of this unit student will be able to
- Understand the principles of urban planning
- Summarize distribution of land use/land cover in urban planning

Unit II
Formulation of Plans Objectives and contents; Regional plan; Perspective plan; Master plan; Development plan; Project (scheme) plan; Delineation of planning area; Trend analysis; Land suitability analysis; Land use planning; Zoning and principles of zoning; Building Byelaws and its principles; Requirement of urban & regional planners; Remote sensing for different levels of development planning

Learning Outcomes
After completion of this unit student will be able to
- Formulate different plans in urban context
- Classify different zones and building bylaws

Unit III
Housing Importance of housing; urban housing demand and production; Slums and squatters; Housing problems in India; National Housing Policy; Site analysis - Layout design; Housing projects/Slum housing; Urban renewal
Learning Outcomes

After completion of this unit student will be able to
- Recognize the importance of housing and its related problems
- Conduct site analysis and design layouts.

Unit – IV Transportation planning Classification of urban roads; Traffic surveys: speed, time, delay surveys; Use of speed, journey time and delay studies; Traffic volume; OriginDestinationsurveys; Parking surveys; Utility of remotesensing in traffic and transportation studies

Learning Outcomes

After completion of this unit student will be able to
- Conduct traffic surveys for solving transportation problems
- Apply remote sensing technology to traffic and transportation studies.

Unit – V Urban Information System Information system: Land; Housing; Transportation; Infrastructure; Trends in mapping using remote sensing, GIS and GPS; Database creation for Infrastructure development Decision support system for urban and regional management.

Learning Outcomes

After completion of this unit student will be able to
- Create database for urban information system
- Develop decision support system for urban management
R.S.2.6 Elective-2
(Choose any one of the following)
A. Digital Photogrammetry and Mapping
B. Geoinformatics for Resources Studies and Disaster Management
C. Spatial database and GIS Modelling

A. Digital Photogrammetry and Mapping

COURSE OBJECTIVES
The objective of the course is to
- Impart knowledge on basics of Geodesy.
- Teach fundamentals of GPS, GNSS.
- Impart knowledge on Aerial and satellite photogrammetry.
- Introduce fundamental of cartography and geo data base organization.

COURSE OUTCOMES
At the end of the course the student will be able to
- Understand Fundamentals of Geodesy, Techniques involved in establishment of geodetic control.
- Concepts of geoid, ellipsoid and their interrelationship.
- Gain knowledge in Aerial and satellite photogrammetric techniques.
- Understand different cartography techniques and Geo D.

Unit 1: Geodesy and Surveying Fundamentals of geodesy, Geodetic reference systems: ICRE, ITRF, Geoid and geoidal heights and undulations. Geodetic datum and datum transformation, Map projection and transformation. Techniques of ground survey (horizontal and vertical control, triangulation, traversing, leveling, GPS and Total Station surveying). Data integration from different sources (GPS, Total Station, High resolution satellites) for large scale mapping and cadastral surveys.

Learning outcomes:
After completion of this unit the student will be able to
- Explain fundamentals of Geodesy and map projection
- Integrate data from different sources for mapping projects

Unit-II: GNSS: Carrier phase measurements, Signal structure, GNNS Errors and biases, Differential Positioning – concepts and principles, IGS station-finalephemeres, differential corrections, accuracy in differential satellite positioning system PS, local area DGPS, wide area DGPS, LAAS, WAAS, GAGAN, Mapping methods with GPS – rapid static method, semi-kinematic method, kinematic method. Real time DGPS, GNSS, GLONASS, IRNSS, GALILEO, Beidou, and future prospects of navigationalsatellites

Learning outcomes:
After completion of this unit the student will be able to
- Explain concept of differential positioning
- Discuss various GPS methods and their advantages
- Identify various GPS satellite systems

Unit-III: Aerial and Satellite Photogrammetry Photogrammetric camera (digital), Imaging systems - Asynchronous imaging, multiline scanners, multiplecamera/multisensors, areascanners, panoramic linear
arrayscanners,widefieldcamera,Imagingproperties,Theoryoforientation:(IO,ROandAO).

Photogrammetric Triangulation: Single image, Stereo-pair (two overlapping images), Strip triangulation, Block Adjustment of Independent Models (BAIM), Bundle Block Adjustment, Special cases (resection, intersection, and stereo-pair generation). **Satellite Photogrammetry:** Orbital Parameters, Orbital Modeling, Data Processing for stereo generation (block triangulation, optimum control requirement), Space Resection and Intersection, Solutions and differences in different sensor models for photogrammetric processing. Processing of IRSIC/ID, CARTOSAT, ASTER, ALOS PRISM, SPOT, IKONOS, Quick Bird etc.

Learning outcomes:
- After completion of this unit the student will be able to
 - Compare Aerial and satellite photogrammetry techniques
 - Generate stereopairs from photographs

Unit IV: Close Range Photogrammetry Principles of CRP, Cameras for Close Range Applications, Data Acquisition, Camera Calibration, Data Processing, Surface Generation, Validation, Terrestrial Laser Scanners and future prospects.

Learning outcomes:
- After completion of this unit the student will be able to
 - Acquire and process Photogrammetric data
 - Validate the accuracy of data

Unit V: Digital Cartography and Visualization Geo Spatial Data Base organization, Digital Cartography, Web Cartography, 3D Simulation and Visualization, Digital earth models and data dissemination services: contemporary approaches (Bhuvan and Google Earth) and future prospects.

Learning outcomes:
- After completion of this unit the student will be able to
 - Discuss various modern cartographic techniques
 - Access and operate various web applications like google earth

Suggested Readings:

Books and Reports

6. Wolfgang Torge, W., Geodesy, 3rd edition
10. KraakMenno-

Textbooks

- Rangwala,TownPlanning,CharotarPublishingHouse,Anand,India

B. Geoinformatics for Disaster Management

COURSE OBJECTIVES
The Objectives of the course is to
- Introduce basic concepts and importance of Natural resources management.
- Impart knowledge on geospatial applications in managing resources like water, soils and minerals.
- Teach the concept of disaster management.
- Introduce role of geoinformatics in managing different disasters.

COURSE OUTCOMES
After completion of the course the student will be able to
- Understand the importance of natural resource management.
- Explain the role of geoinformatics in managing resources like water, soils and minerals.
- Gain knowledge in concept of disaster management.
- Summarize the application of geoinformatics in different disasters.

Unit I Natural Resources Development: Introduction and Scope: role of geoinformatics technologies – aerial photographs; satellite remote sensing; GPS; andGIS in resource evaluation Water resources – surface water and groundwater resources: mapping and monitoring of watersheds, tanks, and reservoirs; hydrogeomorphic mapping and identification of groundwater potential zones Ocean resources: estimation of sea-surface temperature; primary productivity and potential fishing zones

Learning outcomes: After completion of this unit the student will be able to
- Understand the scope of geoinformatics in natural resource management
- Identify groundwater potential zones
- Analyze satellite data and measure sea surface temperature.

Unit II Soil and agricultural resources: Spectral behavior of soils; Mapping of soils using multispectral images; Evaluation of soil erosion prone zones through GIS; Remote sensing in Land use / land cover mapping; Crop area estimations; monitoring of crop vigour; Yield estimations. Forest resources: mapping of forest types; estimations of timber volume; monitoring of forest health – forest pests, forest fires, Trends in deforestation and afforestation.

Learning outcomes: After completion of this unit the student will be able to
- Prepare soil maps from multispectral images
- Estimate crop area and yield from satellite data
- Identify trends in deforestation and afforestation

Unit III Remote sensing techniques for identification of rocks and minerals; mapping of geological structures; surface manifestation of minerals and their identification; spectral properties of minerals; role of thermal and hyperspectral remote sensing in mineral exploration. Casestudies

Learning outcomes: After completion of this unit the student will be able to
- Identify rocks and minerals from remote sensing data
- Summarize the role of hyperspectral and thermal remote sensing in mineral exploration
Unit IV Geoinformatics in Disaster Management: introduction and scope Coastal Hazards: Storm surges and Tsunamis: Origin, propagation and run-up; Role of coastal topography, bathymetry and vegetation; Coastal hazard preparedness—Role of geoinformatics in coastal hazard mapping, risk and vulnerability assessment and evacuation analysis; coastal protection, education and awareness of coastal communities

Learning outcomes:
After completion of this unit the student will be able to
- Discuss the scope of geoinformatics in disaster management
- Prepare coastal hazard and vulnerability maps

Unit V Geoinformatics applications in disaster mapping and mitigation; Risk zone mapping: earthquakes – identification of geological structures like faults; volcanic activity – thermal imaging for monitoring temperature changes; Geoinformatics analysis of potential zones for landslides, avalanches, and floods. Mapping of disaster affected areas for rescue and mitigation; damage assessment; GIS-based decision support systems for disaster management

Learning outcomes:
After completion of this unit the student will be able to
- Identify geological folds and faults from satellite data
- Prepare maps of disaster effected areas for rescue and mitigation

Books and References:
- GeomaticssolutionsforDisasterManagement,Li,ZlatanovaandFabbri(ed),Springer,2007
- Applications of Remote Sensing in Agriculture, M.D. Steven and J.A. Clark, Butterworths, 1990
- Tsunamis–tosurvivefromtsunami,SusumuMurataetal.,2009WorldScientificBooks

Reference
C: Spatial database and GIS Modelling

Unit-I Spatial Database Management System: Database overview, attribute data model, Spatial Database, spatial Data Type and structures. SpatialDatabaseDesign: Conceptual data modelling, Concept of UML, UML use case, Spatial data topological relationship.

Learning outcomes:
After completion of this unit the student will be able to
- Explain the fundamentals of database management in geospatial context
- Describe the concepts of database modelling.

Unit-II Spatial Database: Storage and Retrieval Concepts of spatial data storage, spatial Indexing, Basics of relational algebra, Data normalization, Spatial Query languages using extended SQL, spatial query processing and optimization.

Learning outcomes:
After completion of this unit the student will be able to
- Explain database storage and retrieval concepts
- Understand the fundamentals of spatial query process

Unit-III GIS Implementing Architectures: GIS Implementation architectures (desktop, client-server, enterprise, mobile, web/cloud, web services from mobile platforms, spatial data acquisition/supply in distributed environment and security issues.

Learning outcomes:
After completion of this unit the student will be able to
- Explain GIS architecture
- Identify various GIS related platforms

Unit-IV Spatial Data Modelling 05: Spatial datamodelling and its classification, spatial decision support system, spatial decision modelling concepts, AHP based modelling with casestudy, Agent based modelling with casestudy.

Learning outcomes:
After completion of this unit the student will be able to
- Discuss spatial data modelling
- Interpret various case studies to understand data modelling

Unit-V Spatial Data Mining: Overview of datamining, Concept of Decision tree based approach with casestudy, Content based image retrieval concept with casestudy.

Learning outcomes:
After completion of this unit the student will be able to
- Explain concept of data mining

Suggested Readings:
RS 2.7 Lab.1. Digital Image Processing Practical
Programme writing in C. language for Data handling and processing of Remote Sensing data including histogram construction, scene enlargement, rationing and enhancement. Application of spatial filters; transformations, colour display techniques, Radiometric correction techniques, for existing satellites. Segmentation and classification methods: supervised and unsupervised techniques for different applications.

RS2.8Lab. 2.Geographic Information Systems (GIS) Practical

COURSE OBJECTIVES
The objective of the course is to
• Familiarize with different GIS software.
• Train student in creating spatial layers in GIS.
• Train student in performing basic GIS tasks.
• Teach Map analysis.

COURSE OUTCOMES
After completion of the course the student will be able to
• Understand basic GIS data concepts.
• Perform basic GIS analysis of concepts.
• Demonstrated a practical application of GIS.
• Gain practical experience in spatial analysis in GIS.

1. Familiarity with DBase Commands including record updating and processing.
2. The representation by usage of graphics commands resources data maintenance - Theme filling and retrieval and usage.
 Exercise: Development/ updating of database management software packages for a selected practical problem using available GIS package.; Arc-info, Arc-View practice and ILWIS software packages; Creation of different spatial layers.; Map analysis.
SEMESTERS III & IV

Dissertation and Viva Voce

A) Dissertation

The student for the fulfillment of M.Tech Degree in Remote Sensing must carry out individual dissertation work. Candidates can do their work in the department or in any industry/research organization for two semesters (3rd and 4th semesters).

B) Evaluation procedure

Progress of the dissertation/thesis work at the end of the 3rd Semester will be evaluated by a committee consisting of Chairman, Board of Studies, Head of the Department and Thesis guide.

The Final thesis at the end of the 4th Semester is evaluated through defense and Viva Voce examination will be conducted by the external examiner and the internal research guide, along with the Head of the Department and Chairman Board of Studies, on the topic of the dissertation carried out by the student. The candidate may be recommended for award of a grade such as A (Excellent); B (Very Good); C (Good); or F (Not Accepted/Failed).

The prerequisite for submission of the M.Tech thesis is that one should communicate his/her work to any refereed journal or publication in a conference. For final result, the dissertation credits are not added for CGPA.