M.Sc Degree Examination First Semester Applied Mathematics 21AM101: Real Analysis (Effective from the admitted batch of 2021-2022)

Time: 3 hours

Maximum: 80 marks

Answer one question from each unit. All questions carry equal marks

<u>UNIT-I</u>

- 1. (a) Let $S \subset \mathbb{R}^n$. Then show that following are equivalent
 - (i) *S* is Compact.
 - (ii) *S* is closed and bounded.
 - (iii) Every infinite subset of *S* has a limit point in *S*.
 - (b) Let P be a non empty perfect set in \mathbb{R}^k . Then show that P is uncountable.

OR

- 2. (a) Let $\{E_n\}$, n = 1,2,3,... be a sequence of countable sets, then prove that $\bigcup_{n=1}^{\infty} E_n$ is a countable set.
 - (b) Prove that the function defined below is discontinuous everywhere.

$$f(x) = \begin{cases} 1, & x \text{ rational,} \\ 0, & x \text{ irrational} \end{cases}$$

<u>UNIT-II</u>

- 3. (a) Let α is increasing on [a, b]. If $f \in R(\alpha)$ on [a, b], then show that $f^2 \in R(\alpha)$ on [a, b].
 - (b) If $f \in R(\alpha)$ on [a, b], then show that $\alpha \in R(f)$ and also show that $\int_{a}^{b} f(x)d\alpha(x) + \int_{a}^{b} \alpha(x)df(x) = f(b)\alpha(b) f(a)\alpha(a)$.
- 4. (a) If $f \in R(\alpha)$, $g \in R(\alpha)$ on [a, b], then show that
 - $C_1 f + C_2 g \in R(\alpha)$ where C_1 and C_2 are constants on [a, b].
 - (b) Let α is increasing on [a, b]. Then for any two partitions P_1 and P_2 , prove that $L(P_1, f, \alpha) \leq U(P_2, f, \alpha)$.

UNIT-III

- 5. (a) If $f \in R$ and $g \in R$ on [a, b], let $F(x) = \int_a^x f(t)dt$, and $G(x) = \int_a^x g(t)dt$ for $x \in [a, b]$. Then show that F and G are continuous functions of bounded variation on [a, b]. Also show that $f \in R(G)$, $g \in R(F)$ and $\int_a^b f(x)g(x)dx = \int_a^b f(x)dG(x) = \int_a^b g(x)dF(x)$.
 - (*b*) State and prove the mean value theorem for Riemann- Stieltjes integrals.

OR

- 6. (a) If f is continuous on [a, b] and α is of bounded variation on [a, b], then Show that $f \in R(\alpha)$ on [a, b].
 - (b) Let $f \in R[a, b]$ and α is continuous on [a, b] with $\alpha' \in R[a, b]$, then show that the integrals $\int_a^b f(x)d\alpha(x)$, $\int_a^b f(x)\alpha'(x)dx$ exist and are equal.

UNIT-IV

- 7. (a) Let one of the partial derivatives $D_1 f$, ..., $D_n f$ exists at c and the remaining n 1 partial derivatives exist in some n-ball B(c) and are continuous at c, then show that f is differentiable at c.
 - (b) Find the second order Taylor expansion of $f(x, y) = e^{-(x^2+y^2)}$ about the point (1, 2).

OR

8. (a) Let u and v be two real valued functions defined on a subset S of the complex plane. Assume that u, v are differentiable at an Interior point c of S and that the partial derivatives satisfy the Cauchy-Riemann equations at c. Then show that function f = u + iv has a derivative at c and f'(c) = D₁u(c) + iD₁v(c).

(b) Compute the directional derivative of the function $f(x, y) = x^2 y^3 + 2x^4 y$ at the point (1, -2) in the direction of the vector $u = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$. What is the maximum value of the directional derivative.

UNIT-V

9. (a) Show that there exists a real continuous function on the real line which is no where differentiable.

(b) Let *K* be a compact metric space, if $\{f_n\} \in C(K)$ for n = 1,2,3,... and if $\{f_n\}$ converges uniformly on *K*, then prove that $\{f_n\}$ is equicontinuous on *K*.

OR

10.(a) Define pointwise convergence and uniform convergence for a sequence of functions $\{(f_n), n = 1, 2, 3, ...\}$. Test the convergence of

$$f_n(x) = \frac{\alpha(x)}{n^2}, x \in \mathbb{R}.$$

(b) State and prove Stone-Weierstrass theorem.

M.Sc Degree Examination First Semester Applied Mathematics 21AM102: Ordinary Differential Equations& Integral Equations (Effective from the admitted batch of 2021-2022)

Time: 3 hours

Maximum: 80 marks

Answer one question from each unit. All questions carry equal marks

<u>UNIT-I</u>

- 1. a) Let $\phi_1, \phi_2, ..., \phi_n$ be n linearly independent solutions of
 - $L(y)=y^{(n)}+a_1(x)y^{(n-1)}+\cdots+a_n(x)y=0$, on an interval *I*. Show that
 - any solution φ of L(y)=0 on *I*, is of the form
 - $\varphi = c_1 \varphi_1 + \dots + c_n \varphi_n$ where c_1, \dots, c_n are constants.
 - b) One solution of $x^3y''' 3x^2y'' + 6xy' 6y = 0$, $\forall x > 0$ is $\phi_1(x) = x$. Find the basis of the above differential equation x > 0.

OR

- 2. a) Let $\phi_1, \phi_2, ..., \phi_n$ be n solutions of L(y)=0 on an interval *I*, prove that they are linearly independent if and only if $W(\phi_1, \phi_2, ..., \phi_n)(x) \neq 0$ for all x in *I*.
 - b) Two solutions of $x^3y^{\prime\prime\prime} 3xy^{\prime} + 3y = 0$ (x > 0) are $\phi_1(x) = x$, $\phi_2(x) = x^3$, then find a third independent solution.

<u>UNIT-II</u>

- b) i)Show that -1 and 1 are regular singular points for the Legendre equation $(1 x^2)y'' 2xyy' + \alpha(\alpha + 1)y = 0$.
 - ii) Find the indicial polynomial and its roots, corresponding to the point x = 1.

OR

- 4. a) Let M,N be two real valued functions which have continuous first partial derivatives on some rectangle $R: |x x_0| \le a$, $|y y_0| \le b$. Then prove that the equation M(x, y) + N(x, y)y' = 0 is exact in R if and only if $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$.
 - b) Find an integrating factor for the following equation $(2y^3 + 2)dx + 3xy^2 dy = 0$ and solve it.

UNIT-III

5. a) State and prove Picards existence theorem on successive approximation for the solution of I.V.P

OR

6. a) Find a solution φ of the system

 $y_{1}^{'} = y_{2},$

$$y_2 = 6y_1 + y_2$$
, satisfying $\varphi(0) = (1, -1)$.

b) Show that the function f given by $f(x, y) = x^2 |y|$ satisfies a Lipschitz condition on $R: |x| \le 1$, $|y| \le 1$, and find Lipschitz constant.

- 7. a) Obtain Fredholm integral equation of second kind corresponding to the $\frac{d^2\phi}{dx^2} + x\phi = 1$, $\phi(0) = 0$, $\phi(1) = 1$, also boundary value problem recover the boundary value problem from the obtained integral equation.
 - b) Solve the integral equation

 $\varphi(x) = (1+x) + \int_0^x (x-s)\varphi(s)ds$ with $\varphi_0(x) = 1$, using the method of successive approximations.

OR

- 8. a) Convert the differential equation $\frac{d^2\phi}{dx^2} 2x\frac{d\phi}{dx} 3\phi = 0$ with the initial conditions $\phi(0) = 0$, $\phi'(0) = 0$ to Volterra's integral equation of second kind, conversely derive the original differential equation with the initial conditions from the integral equation obtained.
 - b) Find the resolvent kernel of the Volterra's integral equation with the kernel $k(x,\xi) = 1$.

UNIT-V

9. a) Find the resolvent kernel of the Volterra's integral equation with the kernel $k(x, u) = \frac{2 + cosx}{2 + cosu}$ and there by solve the integral equation

$$\phi(x) = e^x \sin x + \int_0^x \frac{2 + \cos x}{2 + \cos u} \phi(u) \, du.$$

b) Find the solution of the integral equation

 $\varphi(x) = 1 + x^2 + \int_0^x \frac{1 + x^2}{1 + s^2} \varphi(s) ds$ with the help of the resolvent kernel. OR

10. a) Find the iterated kernel for $k(x,\xi) = x - \xi$ if a = 0, b = 1. b) Solve the following integral equation $\varphi(x) = \frac{5x}{6} + \frac{1}{2} \int_0^1 x \xi \varphi(\xi) d\xi$.

M.Sc. Degree Examination First Semester Applied Mathematics 21AM103:Classical Mechanics (Effective from admitted batch of 2021-2022)

Time: Three hours

Maximum: 80 marks

Answer one question from each unit. All questions carry equal marks

<u>Unit-I</u>

- 1). (a) State and explain conservation principle of angular momentum for a single particle.
 - (b) State and obtain Nielsen's form of the Lagrange's equations for aholonomic dynamical system.

(**OR**)

2). (a)State and explain D' Alembert's principle.(b)Derive the Lagrange's equations of motion from the D' Alembert's principle.

<u>Unit-II</u>

- 3).(a)Derive the Hamilton's principle from the D' Alembert's principle.
 - (b)What is cyclic or ignorable coordinate. Prove that the generalized momentum conjugate to a cyclic coordinate is conserved.

(OR)

- 4). (a)Derive Lagrange's equations of motion from Hamilton's principle.
 - (b) Determine the acceleration of the two masses of a simple Atwood machine, with one fixed pulley and two masses m_1 and m_2 .

<u>Unit-III</u>

- 5). (a) Derive the Hamilton's equations of motion from a variational principle.
 - (b) Obtain Hamilton's Canonical equations of motion for a simple pendulum.

(**OR**)

- 6). (a) State and proveprinciple of least action.
 - (b) Discuss harmonic oscillator as an example of canonical transformations.

Unit-IV

7). (a) State and prove Jacobi's Identity.(b)Prove the invariance of Poisson brackets with respect to canonical transformation.

(OR)

- 8). (a) For what values of α and β do the equations $Q = q^{\alpha} cos(\beta p)$, $P = q^{\alpha} sin(\beta p)$ represent a canonical transformation?
 - (b) Find the motion of one dimensional simple harmonic oscillator by Hamilton- Jacobi method.

<u>Unit-V</u>

9). Derive Lorentz transformation equations.

(**OR**)

10). (a)Explain the following:

(i) Longitudinal contraction effect.

(ii) Simultaneity.

(iii) Proper time.

(b) Show that $ds^2 = -(dx)^2 - (dy)^2 - (dz)^2 + c^2(dt)^2$ is invariant under Lorentz transformation.

M.Sc Degree Examination First Semester Applied Mathematics 21AM104: Discrete Mathematical Structures (Effective from the admitted batch of 2021-2022)

Time: 3 hours

Maximum: 80 marks

Answer one question from each unit. All questions carry equal marks

UNIT-I

- 1. a) Show the following implications without constructing the truth tables. $(P \rightarrow Q) \rightarrow Q \Rightarrow P \lor Q$.
 - b) Show that the following are equivalent formulas.
 i) PV(P∧Q) ⇔ P.
 ii) (PV7P∧Q) ⇔ PVQ.

(or)

2. a) Obtain the principal disjunctive normal form of $P \rightarrow ((P \rightarrow Q) \land \neg(\neg Q \lor \neg P))$ b) Obtain the principal conjunctive normal form of the formula $(\neg P \rightarrow R) \land (Q \leftrightarrows P)$.

<u>UNIT-II</u>

3. a) Demonstrate that *R* is a valid inference from the premises $P \to Q, Q \to R$, and *P*. b) Show that $S \lor R$ is tautologically implied by $(P \lor Q) \land (P \to R) \land (Q \to S)$.

(or)

4. a) Show that the following premises are inconsistent, P → Q, P → R, Q → 7R, P.
b) Show that (x)(P(x)∨Q(x)) ⇒ (x)P(x)∨ (∃x)Q(x).

<u>UNIT-III</u>

- 5. a) If R is a partial ordering relation on a set X and $A \subseteq X$, Show that $R \cap (A \times A)$ is a partial ordering relation on A.
 - b) Let A be a given finite set and ρ(A) its power set. Let ⊆ be the inclusion relation on the elements of ρ(A). Draw Hasse diagrams of < ρ(A), ⊆ > for
 i) A={a}
 ii) A={a,b}
 iii) A={a,b,c}
 iv) A={a,b,c,d}

- 6. a) Let $\langle L, \leq \rangle$ be a lattice in which * and \bigoplus denote the operation of meet and join respectively. Prove that for any $a, b \in L, a \leq b \Leftrightarrow a * b = a \Leftrightarrow a \oplus b = b$.
 - b) Prove that every chain is a distributive lattice.

UNIT-IV

- 7. a) State and derive Euler's formula for graphs.
 - b) Show that the number of vertices of odd degree in any graph is always even.

(or)

- a) Define Hamiltonian and Eulerian graphs and give examples. Also give an example of a graph which is Eulerian but not Hamiltonian.
 - b) Prove that a tree with n vertices has exactly (n-1) edges.

UNIT-V

- 9. a) Write Warshall's algorithm to find the shortest path in graphs.
 - b) Find the minimal spanning tree of the following graph G and find the total weight of the minimal spanning tree by using Prim's algorithm.

(or)

- 10. a) Write Depth-First Search algorithm to find the spanning tree.
 - b) Define a binary tree and draw the binary tree T which corresponds to the algebraic expression $E=(x + 3y)^4(a 2b)$.

M.Sc Degree Examination First Semester Applied Mathematics 21AM105:Programming in C (Effective from the admitted batch of 2021-2022)

Time: Three hours

Maximum: 80 marks

Answer one question from each unit. All questions carry equal marks

<u>Unit-I</u>

- 1. (a) Discuss about operators available in C language.
 - (b) Write a program in C to perform the following
 - (i) Area of a circle, (ii) Circumference of a circle,
 - (iii) Area of a triangle, (iv) Area of a rectangle.

(or)

2.(a)Write and explain the general forms of nested if statements.

(b) Write a program in C to find the roots of quadratic equation using if else structure.

Unit-II

- 3. (a) Explain about various loop statements.
 - (b) Write a C programming to check give number is palindrome or not.

(or)

- 4.(a) Write a program to generate prime numbers in the given range.
 - (b) Write a program in C to convert given decimal number to octal number.

<u>Unit-III</u>

- 5. (a)Write a general form of the function and also write three types of functions.
 - (b) Write a function to swap the values of two variables, and corresponding main program

(or)

- 6.(a) Explain about four different types of storage classes available in C.
 - (b) Write a recursive function to compute factorial of a given integer.

Unit-IV

7.(a)Write a function to compute norm of a matrix.

(b) Write a program in C to compute transpose of a matrix.

(or)

8.(c) Explain the following (i) Pointer variable, (ii) Pointer operator, (iii) Address operator(d) Write a program to copy a string to another string.

<u>Unit-V</u>

- 9. (a) Explain about call by value and call by reference and give examples.
 - (b) Write a program tosort set of n numbers in ascending order using pointers.

(or)

- 10 (a) Explain the relation between
 - (i) pointer and one dimensional array, (ii) pointers and multi dimensional arrays.
 - (b) Write the general form of a structure and create a structure for students data with roll no, age, sex, height and weight and write a program to read and print the contents of the structure.