M.Sc Degree Examination Third Semester **Applied Mathematics** 21AM301: Measure Theory (Effective from the admitted batch of 2021-2022)

Time: 3 hours

Maximum: 80 marks

Answer one question from each unit. All questions carry equal marks.

UNIT-I

- 1. (a) Prove that the outer measure of an interval is it's length.
 - (b)Let f be an extended real valued function whose domain D is measurable . Then prove that the following are equivalent
 - (i) For each real number α the set{ $x: f(x) > \alpha$ } is measurable.
 - (ii) For each real number α the set{ $x: f(x) \ge \alpha$ } is measurable.

OR

- 2. (a) If f is a measurable function and f = g a.e, then show that g is measurable.
 - (b) Let (E_n) be an infinite decreasing sequence of measurable sets with $E_{n+1} \subset E_n$ for each n. Let $m(E_1) < \infty$, Then prove that $m(\bigcap_{i=1}^{\infty} E_i) = \lim_{n \to \infty} m(E_n)$.

UNIT-II

- 3. (a)State and prove bounded convergence theorem for sequence of measurable functions.
 - (b) If ϕ and Ψ are simple functions which vanish outside a set of finite measure , then show that $\int (\alpha \phi + \beta \Psi) = \alpha \int \phi + \beta \int \Psi$, where α, β are constants.

OR

4. (a) Let f be a bounded measurable function defined on a set E of finite measure. Let A and B are disjoint measurable sets of finite measure, then prove that

$$\int_{A\cup B} f = \int_{A} f + \int_{B} f$$

(b) State and prove Lebesgue convergence theorem.

UNIT-III

- 5. (a)State and prove Vitali covering lemma.
 - (b) Let f and g be non-negative and continuous at c. Then show that $D^+(fg)(c) \le f(c)D^+g(c) + g(c)D^+f(c)$.

OR

- (a)Prove that a function f is of bounded variation on [a, b] iff f is the difference of two monotone real valued functions on [a, b].
 - (b) Let $f:[a,b] \to R$ and $g:[a,b] \to R$ and $x \in [a,b]$. Then show that $V_a^x(f+g) \le V_a^x(f) + V_a^x(g)$ and $V_a^x(cf) = |c|V_a^x(f)$ for some constant $c \in R$.

UNIT-IV

7. (a) Let f be an increasing real valued function on [a, b]. Then show that f is differentiable almost everywhere and also show that f' is measurable and

$$\int_{a}^{b} f'(x) dx \le f(b) - f(a).$$

(b) Let f be integrable on [a, b] and $\int_a^x f(t)dt = 0$ for all $x \in [a, b]$, then show that f(t) = 0 a. e in [a, b].

OR

- 8. (a) State and prove Jensen's Inequality.
 - (b) If f is absolutely continuous on [a, b] and f'(x) = 0 a. e, then show that f is constant.

<u>UNIT-V</u>

9. (a) State and prove Riesz- representation theorem for bounded linear functionals.
(b) If f ∈ L^p and g ∈ L^q, then prove that f. g ∈ L¹ and ∫|fg| ≤ ||f||_p. ||g||_q, where p, q are non negative extended real numbers such that ¹/_p + ¹/_q = 1.

OR

- 10. (a) Prove that L^p spaces are complete , $1 \le p < \infty$.
 - (b)Let g be an integrable function on [0, 1] and $|\int fg| \le M ||f||_p$ for some constant M and all bounded measurable functions f. Then prove that $g \in L^q$.

M.Sc Degree Examination Third Semester **Applied Mathematics** 21AM302: Python Programming (Effective from the admitted batch of 2021-2022)

Time: 3 hours

Maximum: 80 marks

Answer one question from each unit. All questions carry equal marks

UNIT-I

1) a) Give a brief explanation of the history of Python. b) Explain type conversion in python with examples.

OR

- 2) a)Discuss about the operators used in Python language.
 - b) Write a program to convert temperature from Centigrade (read it as float value) to Fahrenheit.

UNIT-II

3) a)Differentiate the syntax of if...else and if...elif...else with an example. b) Write a program to check whether a number is prime or not using if blocks.

OR

4) a)Explain about *args and **kwargs. Write a python program to demonstrate their use. b) Write a program to find the largest of three numbers using functions.

UNIT-III

5) a) Explain the basic string operations in Python with examples. b)Write Python program to count the total number of vowels, consonants and blanks in a string.

OR

- 6) a) With the help of an example explain the concept of nested lists. Explain the ways of indexing and slicing the list with examples.
 - b) Write Python program to add two matrices.

UNIT-IV

- 7) a)Define a dictionary. What are the advantages of using dictionary over lists.
 - b)Write a Python program to input information for n number of students as given below:

I. Name

.

II. Registration Number

III. Total Marks

The user has to specify a value for n number of students. The program should output the registration number and marks of a specified student given his name.

OR

8) a) Explain the relation between Tuples and Dictionaries.b) Write Python program to swap two numbers without using intermediate/temporary variables.

UNIT-V

9) a) Explain the different file mode operations with examples.b)Explain the ways to read and write binary files.

OR

10) a)Examine the different types of inheritances with an example
b) Given a point(x, y), write Python program to find whether itlies in the first, second, third or fourth quadrant of x - y plane.

.......

M.Sc Degree Examination Third Semester Applied Mathematics 21AM303:Techniques of Applied Mathematics (Effective from the admitted batch of 2021-2022) Maximum: 80 marks

Time: 3 hours

Answer one question from each unit. All questions carry equal marks

UNIT-I

1.(a) Find the solution of the difference equation,

$$x(n + 3) + 3x(n + 2) - 4x(n + 1) - 12x(n) = 0$$

(b) Show that the operators Δ and Δ^{-1} are linear.

OR

- 2. (a)(i) If $p(E) = a_0 E^k + a_1 E^{k-1} + \dots + a_k I$; where E is the shift operator and g(n) is a discrete function, prove that $(E)(b^n g(n)) = b^n p(bE)g(n)$.
 - (ii) For fixed $k \in \mathbb{Z}^+$, $x \in \mathbb{R}$, prove that $\Delta x^{(k)} = kx^{(k-1)}$, where Δ is forward difference operator.

(b)State and prove Abel's lemma for difference equations.

UNIT-II

3.(a)Solve the initial value problem

 $y(n+2) - 5y(n+1) + 6y(n) = 2^n$, y(1) = y(2) = 0 by the method of variation of parameters.

(b) Solve the difference equation $x(n + 1) = \frac{2x(n)+3}{3x(n)+2}$.

OR

- 4. (a) Explain Pielou logistic equation and derive it's solution.
 - (b) Find the conditions under which the solutions of the equation

$$y(n+2) - \alpha(1+\beta)y(n+1) + \alpha\beta y(n) = 1, \alpha, \beta > 0.$$

- (i) Converge to the equilibrium point y^* , and
- (ii) Oscillate about y^* .

<u>UNIT-III</u>

5. (a) Find A^n if A is given by $\begin{bmatrix} 0 & 1 & 1 \\ -2 & 3 & 1 \\ -3 & 1 & 4 \end{bmatrix}$. (b) Find the general solution of the system of differ

(b) Find the general solution of the system of difference equations

$$x_1(n+1) = -x_1(n) + x_2(n); \quad x_2(n+1) = 2x_2(n) \text{ with } x_1(0) = 1; \quad x_2(0) = 2$$
by discrete Putzer algorithm.

OR

- 6. (a) Prove that for every fundamental matrix φ(n) of the system
 x(n + 1) = A(n)x(n), there exists a non-singular periodic matrix P(n) of period N such that φ(n) = P(n)Bⁿ.
 - (b) Prove that the particular solution of y(n + 1) = A(n)y(n) + g(n), $y_p(n_0) = 0$ is $y_p(n) = \sum_{r=n_0}^{n-1} \phi(n, r + 1)g(r)$.

<u>UNIT-IV</u>

- 7. (a) Solve the difference equation x(n + 2) + 3x(n + 1) + 2x(n) = 0with x(0) = 1, x(1) = -4 by Z-transform method.
 - (b) Find the Z transform and its radius of convergence of the sequence g(n) = aⁿ cos(ωn).

OR

- 8. (a) Find the inverse Z-transform of $\tilde{x}(z) = \frac{z(z-1)}{(z-2)^2(z+3)}$.
 - (b) Let R be the radius of convergence of $\tilde{x}(z)$. Show that

$$z [n^k x(n)] = (-z \frac{d}{dz})^k \tilde{\mathbf{x}}(z) \text{ for } |z| > \mathbb{R}.$$

UNIT-V

9. (a)Derive Euler's equation for minimizing the functional $v[y(x)] = \int_{x_0}^x f(x, y, y') dx$ where $y(x_0) = y_0$, $y(x_1) = y_1$. b)On what curves can the functional $v[y(x)] = \int_0^1 [y'^2 + 12xy] dx$, y(0) = 0, y(1) = 1 be

extremized.

OR

- 10. (a) Find the curve connecting given points A and B which is traversed by a particle sliding from A to B in the shortest time.
 - (b) Find the extremals of the functional

$$v[y(x)] = \int_{x_0}^{x_1} \left[y^{2} - 2y^{2} + y^2 - 2y \right] dx$$

Time: Three hours

Maximum: 80 marks

Answer one question from each unit All questions carry equal marks

<u>Unit-I</u>

1. (a) Prove that the solutions of IVP depends continuously on initial conditions.

(b) Find the solution of $y' = \begin{pmatrix} 0 & 1 \\ -\lambda^2 & 0 \end{pmatrix} y$, $y(\tau) = \overline{b}$. (or)

2. (a) State and prove existence theorem for the solution of system of equations

$$f = f(x, y), \quad y(t_0) = y_0$$

(b) Obtain a sequence of vectors which converges to solution for the IVP

$$\mathbf{y}' = \begin{pmatrix} 0 & 1\\ -2 & 3 \end{pmatrix} \mathbf{y}, \ \mathbf{y}(0) = \begin{pmatrix} 1\\ 2 \end{pmatrix}$$

<u>Unit-II</u>

3. (a) Establish the relationship between the solution of scalar and vector adjoints.

(b) Find the particular solution of the equation system $y' = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} y + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

(or)

4.(a) If u is any vector whose components are linearly independent functions in $c^n[a, b]$, then the differential equation for which u is a fundamental vector is Ly = 0, where $Ly = y^n - d_n k'(u)k^{-1}(u)k(y)$.

(b) Show that $p_0u'' + p_1u' + p_2u = 0$ is self-adjoint if $p_1 = p_0'$. Unit-III

5. (a) Find a fundamental matrix for y' = Ay where $A = \begin{pmatrix} 1 & 3 & 8 \\ -2 & 2 & 1 \\ -3 & 0 & 5 \end{pmatrix}$.

(b) Find the index of compatibility and solution space of the boundary value problem

$$y' = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} y, \qquad \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} y(0) + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix} y(1) = 0.$$

6.(a) Determine the fundamental matrix for

$$y' = \begin{pmatrix} 4 & 2 & -2 \\ -5 & 3 & 2 \\ -2 & 4 & 1 \end{pmatrix} y + \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

(b) With usual notation find the adjoint boundary value problem for y' = Ay, w(a)y(a) + w(b)y(b) = 0.

Unit-IV

7. (a) Find a formula involving Green's matrix for the solution of y' = Ay + f, $w^{[a]}y(a) + w^{[b]}y(b) = 0.$

(b) State and prove the properties of the above Green's matrix.

(or)

8. (a) Find the Green's function to the boundary value problem

$$u = 0,$$

 $u(0) - u'(0)=0,$
 $u(1) + u'(1)=0.$

(b) Find the values of the parameter λ for which the boundary value problem $u'' + \lambda^2 u = 0$, u(0) = 0, $u(\pi) = 0$ is compatible.

<u>Unit-V</u>

9. (a) Prove that the constant system $\dot{x} = Ax + Bu$ is completely controllable if and only if the $n \times nm$

controllability matrix
$$U = [B, AB, A^2B, ..., A^{n-1}B]$$
 has rank n .
(b) Show that the system $\dot{x} = \begin{bmatrix} -2 & 2 \\ 1 & -1 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$ is completely controllable.
(or)

10 (a) Prove that the system $\dot{x} = A(t)x(t) + B(t)u(t)$, y = C(t)x(t) is completely observable if the

symmetric observability matrix

$$V(t_0, t_1) = \int_0^t \Phi^T(\tau, t_0) C^T(\tau) C(\tau) \Phi(\tau, t_0) d\tau$$

is non singular.

(b) Show that system $\dot{x}_1 = a_1x_1 + b_1u$, $\dot{x}_2 = a_2x_2 + b_2u$, $y = x_1$ is completely observable.

M.Sc Degree Examination Third Semester Applied Mathematics 21AM305(B): Optimization Techniques-I (Effective from the admitted batch of 2021-2022)

Time: 3 hours

Maximum: 80 marks

Answer one question from each unit. All questions carry equal marks

<u>UNIT- I</u>

- 1) a) Solve the LPP by simplex method: $Maximize \ z = 2x_1 + 6x_2 subject \ x_1 + 10x_2 \le 7; \ 12x_1 + 3x_2 \le 9; \ 3x_1 + 7x_2 \le 11; \ x_1, x_2 \ge 0.$
 - b) Solve the following LPP by Big-M method $Minimizez = 7x_1 + 6x_2$ Subject o $-x_1 + 9x_2 = 6$; $x_1 + 3x_2 \le 9$; $3x_1 - 7x_2 \ge 1, x_1, x_2 \ge 0$.

2) a) Use revised simplex method to solve the following LPP $\begin{array}{l} Maximize \ z \ = \ 7x_1 \ + 2 \ x_2 - 4x_3 subject \ to \ 6x_1 - 4 \ x_2 + \ 5x_3 \le 6; \\ x_1 + \ 2x_2 + 13x_3 = 10 \ ; \ x_1, x_2, x_3 \ge 0. \end{array}$

b) Explain the special cases in LP problems. During simplex procedure, how do you detect them.

<u>UNIT-II</u>

3) a) Explain the primal dual relationships. Write down the dual of the following LPP: Maximize $z = 4 x_1 + 3x_2 - x_3 + 3x_4$

Subject to
$$44x_1 + x_2 + x_3 = 12$$

 $-x_1 + 5x_2 + 8x_3 - 9x_4 \le 4$

 $x_1, x_2, x_4 \ge 0$; and x_3 is unrestricted in sign.

b) Use dual simplex method to obtain the optimal basic feasible solution to the LPP:

Maximize
$$z = -4x_1 - 6x_2 - 18 x_3$$

Subject to $x_1 + 3x_3 \ge 3$
 $x_2 + 2x_3 \ge 5$
 $x_1, x_2, x_3 \ge 0$
OR

4) Define integer linear programming problem. Solve the following linear programming problem using Branch and Bound method

Maximize
$$z = 4 x_1 + 3x_2$$

Subject to $3x_1 + x_2 \le 15$
 $3 x_1 + 4x_2 \le 24$

 $x_1, x_2 \ge 0$; and are integers

UNIT-III

5) a) Explain the steps of MODI method and use it to find the optimum cost of the following transportation problem:

T1			T2	Т3 Г	Т4	Supply
А	26	14	10	12	22	
В	31	27	30	14	46	
С	15	18	16	25	12	
Demand	17	12	21	30		

b) Explain degeneracy in transportation problem and discuss the method to resolve it.

OR

V

6) a) Explain the mathematical formulation of assignment problem and describe the algorithm to solve the problem.

Solve the following assignment problem:									
	Ι	II		III	IV				
А	8	26	17	11	10				
В	13	28	4	26	12				
С	38	19	18	15	5				
D	19	26	24	10	8				

b) Solve the follo

UNIT-IV

7) a) Use dynamic programming to solve Maximizez = $y_1y_2y_3S.T.y_1 + y_2 + y_3 = 5$, y_1 , y_2 , $y_3 \ge 0$. b) Explain the main characteristic features of dynamic programming.

OR

8) Explain the procedure for solving a LP problem using dynamic programming approach.

Using Dynamin Programming, solve the following LPP

Max $z = 3x_1 + 2x_2$ s.t. $x_1 + x_2 \le 300$ $2x_1 + 3x_2 \le 800$ $\mathbf{x}_1, \mathbf{x}_2 \ge \mathbf{0}.$

UNIT-V

- 9) a) Explain Fibonacci method for solving unconstrained optimization problem.
 b) Minimize f(x₁, x₂) = x₁ x₂ + 2x₁² + 2x₁x₂ + x₂² starting from the point $X_1 = \begin{cases} 0 \\ 0 \end{cases}.$

OR

10) Minimize $f = x_1^2 + 3x_2^2 + 6x_3^2$ by the Hooke-Jeeve's method by taking $\Delta x_1 = \Delta x_2 = \Delta x_3 = 0.5$ and the starting point as (2, -1, 1). Perform two iterations.

M.Sc Degree Examination Third Semester Applied Mathematics 21AM306(C):Relativity & Cosmology-I (Effective from the admitted batch of 2021-2022)

Time: 3 hours

Maximum: 80 marks

Answer one question from each unit. All questions carry equal marks

<u>Unit-I</u>

(a) Sate and prove Quotient law of tensors.
 (b) Show that the metric of a Euclidean space, referred to spherical polar coordinates x¹ = r, x² = θ and x³ = ψ is given by ds² = dr² + r²dθ² + r² sin² θ dψ².

(OR)

2). (a) If $A_{ij} = B_{i, j} - B_{j, i}$, prove that $A_{ij, k} + A_{jk, i} + A_{ki, j} = 0$. (b) If A^{ijk} is skew symmetric tensor, show that $\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^k} (\sqrt{g} A^{ijk})$ is a tensor.

<u>Unit-II</u>

3). (a) Obtain an expression for Riemann Christoffel Tensor and also Ricci Tensor.
(b) Derive covariant curvature tensor*R_{hij}* and discuss properties of covariant curvature tensor.

(OR)

- 4). (a) Sate and prove Bianchi's identity.
 - (b) Prove that $R_{1212} = -G \frac{\partial^2 G}{\partial u^2}$ for the V_2 whose line- element is $ds^2 = du^2 + G^2 dv^2$, where G is a function of u and v.

<u>Unit-III</u>

5). (a) Show that the Lorentz transformations about to rotation of axis in space time.
(b) Explain the following terms in detail.
(i) World line. (ii) Space-like vector. (iii) Light cone.

(OR)

- 6). (a) Write about Minkowski-Space.
 - (b) Explain the transformation to proper coordinates.

<u>Unit-IV</u>

(a) Derive expression for variation of mass of a body with velocity.(b) Derive the transformation formula for force of a body.

(OR)

8). (a) Establish the relation E = mc² and discuss the equivalence of mass and energy.
(b) Prove that E² = p²c² + m₀²c⁴ for all the particles in inertial frames.

<u>Unit-V</u>

9). (a) Show that the equation of continuity in electrodynamics in the form : $\frac{\partial \rho}{\partial t} + div J = 0$.

(b) Derive the transformation equations for electric and magnetic field intensities \overline{E} and \overline{H} .

(**OR**)

10). Obtain Maxwell's equations in tensor form.