<table>
<thead>
<tr>
<th>Year</th>
<th>Semester</th>
<th>Course</th>
<th>Title of the Course</th>
<th>No. of Hrs /Week</th>
<th>No. of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>I</td>
<td>1</td>
<td>Introduction to Classical Biology</td>
<td>3+2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Introduction to Applied Biology</td>
<td>3+2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>3</td>
<td>Principles of Genetics</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Principles of Genetics Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Human Genetics and Cytogenetics</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Human Genetics and Cytogenetics Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>5</td>
<td>Human Molecular Genetics</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Human Molecular Genetics Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Recombinant DNA technology</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Recombinant DNA technology Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>Molecular Techniques in Genetic Engineering</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Molecular Techniques in Genetic Engineering Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>Molecular Pathology in human diseases</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Molecular Pathology in human diseases Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>Statistics and Informatics in Human Genetics</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Statistics and Informatics in Human Genetics Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>Clinical genetics and Genetic Counselling</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clinical genetics and Genetic Counselling Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>Developmental and behavioural genetics</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Developmental and behavioural genetics Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>Human Genome Project and Genome</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Human Genome Project and Genome Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>Cellular and Molecular Immunology</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Year</td>
<td>Semester</td>
<td>Course</td>
<td>Title of the Course</td>
<td>No. of Hrs /Week</td>
<td>No. of Credits</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>--------</td>
<td>--</td>
<td>------------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cellular and Molecular Immunology Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stem cell technology</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stem cell technology Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Microbial genetics</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Microbial genetics Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Forensic science</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DNA forensics and Serology</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DNA forensics and Serology Practical Course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td></td>
<td></td>
<td>Internship</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cell Biology</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cell Biology Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ecology and ConservationGenetics</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ecology and ConservationGenetics Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Biomolecules</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Biomolecules Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Human Embryology and Developmental Genetics Practical Course</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Human Embryology and Developmental Genetics Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Human Anatomy</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Human Anatomy Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cell Culture and TissueEngineering Technology</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cell Culture and TissueEngineering Technology Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SEC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Medical Genetics</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Medical Genetics Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Biochemical Genetics</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Biochemical Genetics Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clinical Hematology</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clinical Hematology Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Semester</td>
<td>Course</td>
<td>Title of the Course</td>
<td>No. of Hrs/Week</td>
<td>No. of Credits</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>--------</td>
<td>---</td>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>20 B</td>
<td></td>
<td></td>
<td>Applications of Human Genetics</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Applications of Human Genetics Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>21 A</td>
<td></td>
<td>Cancer Genetics</td>
<td>Cancer Genetics Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

OR

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester</th>
<th>Course</th>
<th>Title of the Course</th>
<th>No. of Hrs/Week</th>
<th>No. of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 B</td>
<td></td>
<td></td>
<td>Evolutionary and Quantitative Genetics</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Evolutionary and Quantitative Genetics Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>22 A</td>
<td></td>
<td>Metabolism</td>
<td>Metabolism Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

OR

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester</th>
<th>Course</th>
<th>Title of the Course</th>
<th>No. of Hrs/Week</th>
<th>No. of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 B</td>
<td></td>
<td></td>
<td>Reproductive Genetics</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reproductive Genetics Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>23 A</td>
<td></td>
<td>Population Genetics</td>
<td>Population Genetics Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

OR

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester</th>
<th>Course</th>
<th>Title of the Course</th>
<th>No. of Hrs/Week</th>
<th>No. of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 B</td>
<td></td>
<td></td>
<td>Recent Advances in Human Genetics</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Recent Advances in Human Genetics Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

SEC

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester</th>
<th>Course</th>
<th>Title of the Course</th>
<th>No. of Hrs/Week</th>
<th>No. of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 A</td>
<td></td>
<td></td>
<td>Fundamentals of Physiology</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fundamentals of Physiology Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

OR

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester</th>
<th>Course</th>
<th>Title of the Course</th>
<th>No. of Hrs/Week</th>
<th>No. of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 B</td>
<td></td>
<td></td>
<td>Analytical Techniques</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Analytical Techniques Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>25 A</td>
<td></td>
<td></td>
<td>Immunogenetics</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Immunogenetics Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

OR

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester</th>
<th>Course</th>
<th>Title of the Course</th>
<th>No. of Hrs/Week</th>
<th>No. of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 B</td>
<td></td>
<td></td>
<td>Genetic Toxicology</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Genetic Toxicology Practical Course</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
SEMESTER-I
COURSE 1: INTRODUCTION TO CLASSICAL BIOLOGY

Theory Credits: 4
5 hrs/week

Learning objectives
The student will be able to learn the diversity and classification of living organisms and understand their chemical, cytological, evolutionary and genetic principles.

Learning Outcomes
1. Learn the principles of classification and preservation of biodiversity
2. Understand the plant anatomical, physiological and reproductive processes.
3. Knowledge on animal classification, physiology, embryonic development and their economic importance.
4. Outline the cell components, cell processes like cell division, heredity and molecular processes.
5. Comprehend the chemical principles in shaping and driving the macromolecules and life processes.

Unit 1: Introduction to systematics, taxonomy and ecology.
1.2. Nomenclature – ICBN and ICZN, Binomial and trinomial nomenclature.
1.3. Ecology – Concept of ecosystem, Biodiversity and conservation.
1.4. Pollution and climate change.

Unit 2: Essentials of Botany.
2.1. The classification of plant kingdom.
2.2. Plant physiological processes (Photosynthesis, Respiration, Transpiration, phytohormones).
2.3. Structure of flower – Micro and macro sporogenesis, pollination, fertilization and structure of mono and dicot embryos.
2.4 Mushroom cultivation, floriculture and landscaping.

Unit 3: Essentials of Zoology
3.1. The classification of Kingdom Animalia and Chordata.
3.2 Animal Physiology – Basics of Organ Systems & their functions, Hormones and Disorders
3.3 Developmental Biology – Basic process of development (Gametogenesis, Fertilization, Cleavage and Organogenesis)
3.4 Economic Zoology – Sericulture, Apiculture, Aquaculture

Unit 4: Cell biology, Genetics and Evolution
4.3. Central Dogma of Molecular Biology.
4.4. Origin of life
Unit 5: Essentials of chemistry

5.1. Definition and scope of chemistry, applications of chemistry in daily life.
5.2. Branches of chemistry
5.3. Chemical bonds – ionic, covalent, noncovalent – Vander Waals, hydrophobic, hydrogen bonds.
5.4. Green chemistry

References

ACTIVITIES:

1. Make a display chart of life cycle of nonflowering plants.
2. Make a display chart of life cycle of flowering plants.
3. Study of stomata
4. Activity to prove that chlorophyll is essential for photosynthesis
5. Study of pollen grains.
6. Observation of pollen germination.
7. Ikebana.
8. Differentiate between edible and poisonous mushrooms.
9. Visit a nearby mushroom cultivation unit and know the economics of mushroom cultivation.
10. Draw the Ultrastructure of Prokaryotic and Eukaryotic Cell
11. Visit to Zoology Lab and observe different types of preservation of specimens
13. Visit to Zoo / Sericulture / Apiculture / Aquaculture unit
14. List out different hormonal, genetic and physiological disorders from the society
SEMESTER-I

COURSE 2: INTRODUCTION TO APPLIED BIOLOGY

Theory

Credits: 4

5 hrs/week

Learning objectives

The student will be able to learn the foundations and principles of microbiology, immunology, biochemistry, biotechnology, analytical tools, quantitative methods, and bioinformatics.

Learning Outcomes

1. Learn the history, ultrastructure, diversity and importance of microorganisms.
2. Understand the structure and functions of macromolecules.
3. Knowledge on biotechnology principles and its applications in food and medicine.
4. Outline the techniques, tools and their uses in diagnosis and therapy.
5. Demonstrate the bioinformatics and statistical tools in comprehending the complex biological data.

Unit 1: Essentials of Microbiology and Immunology

1.1. History and Major Milestones of Microbiology; Contributions of Edward Jenner, Louis Pasteur, Robert Koch and Joseph Lister.
1.2. Groups of Microorganisms – Structure and characteristics of Bacteria, Fungi, Archaea and Virus.
1.3. Applications of microorganisms in – Food, Agriculture, Environment, and Industry.
1.4. Immune system – Immunity, types of immunity, cells and organs of immune system.

Unit 2: Essentials of Biochemistry

2.2. Biomolecules II – Amino acids & Proteins.
2.3. Biomolecules III – Nucleic acids -DNA and RNA.
2.4. Basics of Metabolism – Anabolism and catabolism.

Unit 3: Essentials of Biotechnology

3.2. Environmental Biotechnology – Bioremediation and Biofuels, Biofertilizers and Biopesticides.
3.3. Genetic engineering – Gene manipulation using restriction enzymes and cloning vectors; Physical, chemical, and biological methods of gene transfer.
Unit 4: Analytical Tools and techniques in biology – Applications

4.1. Applications in forensics – PCR and DNA fingerprinting
4.2. Immunological techniques – Immunoblotting and ELISA.
4.3. Monoclonal antibodies – Applications in diagnosis and therapy.
4.4. Eugenics and Gene therapy

Unit 5: Biostatistics and Bioinformatics

5.1. Data collection and sampling. Measures of central tendency – Mean, Median, Mode.
5.3. Introduction, Genomics, Proteomics, types of Biological data, biological databases- NCBI, EBI, Gen Bank; Protein 3D structures, Sequence alignment
5.4. Accessing Nucleic Acid and Protein databases, NCBI Genome Workbench

REFERENCES

ACTIVITIES

1. Identification of given organism as harmful or beneficial.
2. Observation of microorganisms from house dust under microscope.
3. Finding microorganism from pond water.
4. Visit to a microbiology industry or biotech company.
5. Visit to a waste water treatment plant.
6. Retrieving a DNA or protein sequence of a gene
7. Performing a BLAST analysis for DNA and protein.
8. Problems on biostatistics.
9. Field trip and awareness programs on environmental pollution by different types of wastes and hazardous materials.
10. Demonstration on basic biotechnology lab equipment.
11. Preparation of 3D models of genetic engineering techniques.
12. Preparation of 3D models of transgenic plants and animals.

[NOTE: In the colleges where there is availability of faculty for microbiology and biotechnology, those chapters need to be handled by microbiology and biotechnology faculty. In other colleges, the above topics shall be dealt by Botany and Zoology faculty]
I. LEARNING OUTCOMES
Upon successful completion, each student will have the basic knowledge:
1. Historical overview and laws of Inheritance
2. Understand Mendel’s principles and deviations
3. Gene interactions and their outcome through gene mapping
4. Understand the mitochondrial inheritance in different organisms
5. Understand the variance and heritability of traits

II. Syllabus

UNIT-1 HISTORY OF GENETICS
1. Pre-mendelian Genetic concepts, Heredity, and environment, the concept of phenotype and genotype, pure lines and inbred lines
2. Biography of Mendel and his experiments on pea plants. Mendel laws
3. Deviations of Mendelism (Incomplete dominance and codominance; Multiple alleles, Lethal alleles, Pleiotropy, Penetrance, and Expressivity, Epistasis, and non-epistasis)

UNIT- 2 Sex Linked Inheritance and Sex Determination
1. Chromosome theory of Sex determination: XX- XY, XX-XO, ZZ-ZW, Genic balance theoryof Bridges, Intersexes and Super sexes in Drosophila,
2. Sex differentiation in Drosophila and Man, Sex limited and Sex influenced inheritance
3. Sex determination in mammals- and role of human Y chromosome

UNIT-3 LINKAGE, CROSSING OVER, AND GENE MAPPING
1. Linkage - Definition, Linkage group- Drosophila and man; Types of linkage-complete linkageand incomplete linkage, Significance of linkage.
2. Crossing over - definition; recombination and recombination frequency, Mechanism of crossing over: Chiasma Interference and coincidence; Coupling and Repulsion hypothesis.
3. Gene Mapping – physical mapping and genetic mapping, mapping in eukaryotes and prokaryotes

UNIT – 4 EXTRACHROMOSOMAL INHERITANCE
1. Characteristic features of Cytoplasmic Inheritance; Inheritance of- Mitochondrial DNA, Chloroplast DNA, Kappa particles in Paramecium, Shell coiling in snail.
2. Infective heredity -Drosophila, petite mutations and mitochondrial inheritance in man
3. Epigenetics and genome imprinting in humans
UNIT -5 INHERITANCE OF QUANTITATIVE TRAITS
1. Continuous and Discontinuous variation
2. Polygenic Inheritance and Multifactorial Inheritance
3. Genetic Variance, Heritability (narrow sense and Broad sense)

III. Skills Outcome
On Successful Completion of this Course, Student shall be able to
1. Study the Mendel Laws and their Deviations
2. Study the Chromosomal Recombination’s
3. Study the Genetic Disorders
4. Identification of the Blood Groups
IV.

1. Mendel’s laws through seed ratios & Drosophila mutants
2. Study of linkage, recombination, and chromosome mapping using test cross data.
4. Pedigree analysis for dominant and recessive autosomal and sex-linked traits.
5. Study of human genetic traits: Sickle cell anemia, Xeroderma Pigmentosum, Albinism.
6. Tests for red-green Colour blindness, Widow’s peak, Rolling of the tongue, Hitchhiker’s thumb, and Attached ear lobe.
7. Incomplete dominance and gene interaction through seed ratios
9. Study of aneuploidy: Down’s, Klinefelter’s and Turner’s syndromes.
11. Smear technique to demonstrate sex chromatin buccal epithelial cells

V. REFERENCES

VI. Co-Curricular Activities

a) Suggested C0-Curricular Activities

1. Assignments
2. Seminars, Group Discussions on related topics
3. Preparation of mitosis and meiosis slides
4. Pedigree preparations based on community
5. Colour blindness study in a community
6. Blood group studies
I. LEARNING OUTCOMES
Upon successful completion, each student will have the basic knowledge:
1. On Pedigree symbols
2. Understand the types of Inheritance patterns
3. On Twin Studies
4. On Mapping Techniques
5. Understand the chromosome and their anomalies

II. Syllabus

Unit 1 Basic Human Genetics – Monogenic Traits
1. History of Human Genetics. Pedigrees – family history, symbols, construction of a pedigree
2. Monogenic traits - autosomal inheritance, sex-linked inheritance, sex-limited and sex-influenced inheritance, mitochondrial inheritance
3. Complications in pedigree patterns – non-penetrance, expressivity, pleiotropy, genetic heterogeneity, uniparental disomy, male lethality, X inactivation, consanguinity

Unit 2 Basic Human Genetics – Complex traits
1. Twin Studies - monozygotic and dizygotic twins
2. Polygenic inheritance of continuous traits – normal growth charts, dysmorphology
3. Polygenic inheritance of discontinuous traits – threshold model, liability and recurrence risk

Unit 3 Genetic Mapping of Mendelian and Complex characters
1. Identifying recombinants and non-recombinants in pedigrees
2. Two-point mapping – LOD score analysis, multipoint mapping, homozygosity mapping
3. Genetic mapping of complex traits – difficulties in mapping, allele sharing methods, sib-pair analysis, allelic association, linkage disequilibrium mapping

Unit 4 Human Chromosomes
1. History of human cytogenetics
2. Human karyotype – banding, the nomenclature of banding
3. Nomenclature of aberrant karyotypes
Unit 5 Chromosome anomalies

1. Common syndromes due to numerical chromosome changes
2. Common syndromes due to structural alterations (translocations, duplications, deletions, microdeletions, fragile sites)
3. Common chromosome abnormalities in cancer

III Skill Outcomes

On successful completion of practical course students shall be able to
1. Barr Body Analysis
2. Dermatoglyphics
3. Karyotyping
4. Chromosomal Abnormal Studies
5. Metaphase Chromosome Preparations of leucocyte culture
IV. Practical’s Syllabus

1. Preparation of pedigree charts for blood group, tongue rolling, ear lobes and colour-blindness
2. Genetics of codominant genes – blood groups.
4. Dermatoglyphics
5. Polygenic inheritance – fingerprint ridge count
6. Preparation of metaphase chromosome spread using peripheral blood sample.
7. Preparation of metaphase plates and their staining and analysis
8. Human karyotyping – numerical on chromosome number.
10. Study of various abnormal karyotypes observed in humans.
11. G- banding of metaphase plates and their analysis
12. Sister Chromatid exchange analysis from peripheral blood

V. SUGGESTED READINGS:
1. Human Genetics: Concept and Application by Ricki Lewis 10th Edition
2. Vogel and Motulsky’s Human Genetics: Problems and Approaches

VI. Co-curricular Activities

a) Suggested Co-curricular Activities
1. Assignments
2. Group Discussions and Seminar On Related Topics
3. Karyotype Preparation
4. Dermatoglyphics
I. LEARNING OUTCOMES

Upon successful completion, each student will have the basic knowledge:
1. On Nucleic Acids and Proteins
2. On Gene Expression
3. On DNA Replication and Their Mechanism
4. On Chromosomal Organization Of DNA
5. On Mitochondrial Genome and Nuclear Genome

II. Syllabus (Total Teaching Hours: 45hr)

Unit 1 DNA, RNA and Protein Structure
 1.1 Building blocks and chemical bonds in DNA, – structure of DNA, A-B-Z and triplex DNA,
 1.2 Building blocks and chemical bonds in RNA – Structure of RNA
 1.3 Building blocks and chemical bonds in peptides- primary, secondary, tertiary and quaternary structure of proteins

Unit 2 Gene expression
 2.1 Central dogma of molecular biology
 2.2 RNA transcription, and RNA Processing
 2.3 Translation, post-translation processing

Unit 3 DNA replication, Mutagenesis and DNA repair
 3.1 DNA replication – modes of Replication, DNA replication machinery and mechanism
 3.2 DNA mutagenesis
 3.3 DNA repair

Unit 4 Human Chromosome Organization
 4.1 Packaging of DNA – multiple hierarchies of DNA folding
 4.2 Chromosomes as functional organelles – origins of replication, telomeres, centromeres
 4.3 Heterochromatin and euchromatin

Unit 5 Human Genome Organization
 5.1 Mitochondrial genome – replication, genes, genetic code
 5.2 Nuclear genome – protein coding genes RNA genes
 5.3 Nuclear genome – highly repetitive DNA, heterochromatin and transposon repetitive
III. SKILL OUTCOMES
On successful completion of practical course students shall be able to
1. Learn The Extractions Of DNA From Various Sources
2. Learn The Chromatographic Techniques
3. Learn The Electrophoresis Techniques
4. Learn DNA Damage By Various Assays
IV. PRACTICAL Hours
1. Extraction of DNA from human lymphocytes
2. Paper chromatography of amino acids
3. Electrophoresis: agarose gel electrophoresis, PAGE
4. Study of isozymes by PAGE
5. Comet assay to measure DNA damage
6. Problem-based on homologous and site-specific recombination
7. Effects of mutagens and repair deficient *E.coli* strains.
8. Preparation of Human chromosome spread and banding

V. Suggested Readings:
1. Human Molecular Genetics by T. Strachan
2. Human Molecular Genetics by Gerard Meurant
3. Human Molecular Genetics by Christopher G Mathew.
4. Human Molecular Genetics by Sudbury

VI. Co-curricular Activities
a) Suggested Co-curricular Activities
1. Assignments
2. Group Discussions and Seminar On Related Topics
3. Genomic Isolation Techniques
4. Molecule Separation Techniques
I. LEARNING OUTCOMES

Upon successful completion, each student will have the basic knowledge:
1. Basics Of r-DNA Technology
2. On Types of Gene Cloning
3. Applications of r-DNA Technology
4. Concepts of Stem Cells
5. Applications of Stem Cells

II. Syllabus

Unit 1 Cell Based Cloning

1. Restriction endonucleases and other enzymes used in manipulating DNA molecules
2. Cloning vectors – plasmid vectors, lambda and cosmid vectors, P1 phage vectors, YAC,BAC, M13 or phagemid vectors, expression vectors
3. Introducing recombinant DNA into recipient cells, DNA libraries - generation of genomic and cDNA libraries

Unit 2 Cloning Human disease genes

2. Detection of mutations in human genes – SSCP analysis, DGGE, chemical mismatch cleavage
3. Detection of mutation in human gene – DNA sequencing, heteroduplex analysis, protein truncation

Unit 3 Applications of rDNA technology

1. DNA fingerprinting – use of mini-satellites for DNA fingerprinting, single locus probes,STRs
2. Genetic testing – prenatal testing, neonatal screening, diagnosis of genetic disease in children after birth, pre-symptomatic testing.

Unit 4 Biology of stem cells

1. Historical perspectives, concept of stem cells
2. Cellular and molecular features of stem cells
3. Embryonic stem cells and germ stem cells
4. Fetal adult stem cells and cancer stem cells

Unit 5 Applications

1. Medical need for stem cells and preservation of stem cells
2. Genetically engineered stem cells for gene therapy
3. Stem cell therapy – neurodegenerative disorders, cardiovascular disorders, metabolic disorders, hematopoietic disorders, organ disorders, autoimmune disorders, reproductive failures

III. Skill Outcomes

 On successful completion of practical course students shall be able to
 1. Learn the Isolations Of Plasmid
 2. Restriction Digestion
 3. Blotting Techniques
 4. Amplification Of DNA
IV. Practicals

- Isolation of plasmid DNA from *E. coli* cells.
- Digestion of plasmid DNA with restriction enzymes.
- Preparation of competent cells of *E. coli*.
- Transformation of competent *E. coli* cells with plasmid DNA.
- Amplification of a DNA fragment by PCR.
- Complementation of beta-galactosidase for Blue and White selection.
- Southern blotting.
- Western blotting.
- Culturing cells – aseptic techniques, media.
- Subculturing and cell lines.
- Cryopreservation.

V. Suggested Readings

4. Human Molecular Genetics by Sudbury.

VI. Co-curricular Activities

a) Suggested Co-curricular Activities

1. Assignments
2. Group Discussions And Seminar On Related Topics
3. Debate
4. Cloning Of Diseases
SEMESTER-III
COURSE 7: MOLECULAR TECHNIQUES IN GENETIC ENGINEERING
Theory Credits: 3 3 hrs/week

I. LEARNING OUTCOMES
Upon successful completion, each student will have the basic knowledge:
1. on different methods of isolation of DNA
2. on PCR and types
3. on Hybridization methods
4. on sequencing of DNA
5. on protein isolation techniques

II. Syllabus

Unit-1 Nucleic Acid Isolation And Agarose Gel Electrophoresis
1. Conventional and kit method for isolation of nucleic acids-Plasmid DNA-Genomic DNA from Bacterial cells, Plant cells, animal cells
2. RNA isolation and m-RNA purification –Agarose purification
3. Agarose gel electrophoresis-Staining techniques –Pulse field gel electrophoresis

Unit-2 PCR Techniques
1. Principle of Polymerase Chain Reaction (PCR)-Components of PCR reaction and optimization of PCR
2. Gene-specific primer- Inverse PCR, Hot-start PCR, Loop-mediated
3. PCR – Reverse transcription PCR and Real time PCR. Chemistry of primer synthesis

Unit-3 Hybridization Methods
1. Probes –Labelling of probes
2. Radioactive and non-radioactive probes
3. Detection techniques, Southern hybridization, Northern hybridization, Western blotting

Unit-4 DNA Sequencing and Gene Synthesis
1. Sanger’s method of DNA sequencing – Manual and automated methods
2. Pyrosequencing-massive parallel 454-sequencing,
3. illumine sequencing, SOLID sequencing, single molecule sequencing
UNIT-5 Protein Techniques

1. Electrophoresis of protein – native and denaturing conditions, capillary
2. Gel electrophoresis, 3D gel electrophoresis, ELISA,
3. Yeast hybrid system-one hybrid system, Phage display

III. Skill Outcomes
On successful completion of the practical course students shall be able to

 1. Different PCR Techniques
 2. Primer Designing
 3. Blotting Techniques
SEMESTER-III
COURSE 7: MOLECULAR TECHNIQUES IN GENETIC ENGINEERING

Practical Credits: 1 2 hrs/week

IV. PRACTICAL
1. Primer designing
2. Insertion deletion polymorphism
3. DNA Fingerprinting – RFLPs and VNTRs
4. Amplification and purification of DNA fragments
5. ARMS-PCR
6. Multiplex PCR
7. Nested PCR
8. DNA sequencing methods
9. SDS-Gel electrophoresis
10. Southern blotting
11. Northern blotting
12. Western blotting

V. REFERENCES

VI. Co-curricular Activities
a) Suggested Co-curricular Activities
1. Assignments
2. Group Discussions and Seminar on related topics
3. PowerPoint presentations on sequencing and PCR
4. Demonstrating of blotting technique
SEMESTER-III

COURSE 8: MOLECULAR PATHOLOGY IN HUMAN DISEASES

Theory Credits: 3 3 hrs/week

I. LEARNING OUTCOMES

Upon successful completion, each student will have the basic knowledge:
1. On Genetically Inherited Diseases
2. On Epidemiology Of Diseases
3. Mode Of Transmission Of Diseases
4. Basic Instrumentation And Their Techniques
5. On Testing Of Infectious Diseases

II. Syllabus

Unit 1 Human diseases I

1. Etiology, pathology and symptoms of genetically inherited diseases – PKU, alkaptonuria, galactosemia, Von Gierke disease, LeschNyhan syndrome, Gout, sickle cell anaemia, betathalassemia, diabetes
2. Mode of infection, symptoms and epidemiology of disease causes by viruses (HIV, Hepatitis B, Rabies, HSV-1)
3. Mode of infection, symptoms and epidemiology of disease caused by bacteria – typhoid, syphilis, TB

Unit 2 Human diseases II

1. Mode of infection, symptoms and epidemiology of disease caused by fungi – aspergillosis, histoplasmosis.
3. Cancer genetics - tumour suppressor genes, oncogenes, Molecular basis of oncogenesis

Unit 3 Basic Instrumentation principles and techniques

1. Principles of electrophoresis and immunoblotting
2. Principles of DNA sequencing and methods of genotyping and mutation analysis
3. Principles and applications of PCR, In situ hybridization techniques – ISH, FISH
Unit 4 Genetic testing for hereditary disorders

1. Genetic testing for thalassemia
2. Genetic testing for familial colorectal cancer
3. Genetic testing for familial breast and ovarian cancer

Unit 5 Molecular diagnosis of infectious diseases

1. Principles of HPV testing and methods of genotyping
2. Hepatitis B virus infection – testing for viral load and HBV DNA mutants detection
3. Molecular techniques - Nested, Real Time PCR for different clinical applications

III. Skill Outcomes

On successful completion of the practical course students shall be able to:
1. Learn Isolation Of RNA/DNA
2. Karyotyping
3. Analyzing Of Electrophoretic Results
4. PCR Setup
IV. Practical

1. Extract and assess the purity of DNA.
2. Agarose gel electrophoresis
3. Set up PCR.
4. Evaluate Southern blot data
5. Analyze PCR product using agarose gel electrophoresis and interpret results
6. Demonstration of karyotyping
7. Isolate cellular RNA, purify mRNA
8. Set up RT-PCR using commercial kit
9. Analyze RT-PCR results by agarose gel.

V. References

5. DNA from A to Z & Back Again; Carol A. Holland and Daniel H. Farkas; AACC Press 2008

VI. Co-curricular Activities

a) Suggested Co-curricular Activities

1. Assignments
2. Group Discussions and Seminar on related topics
3. Power point presentation
4. Charts on life cycle of infectious Diseases
I. LEARNING OUTCOMES
Upon successful completion, each student will have the basic knowledge:
1. on principles of statistics
2. on probability and their distribution
3. on correlation Analysis
4. on computers and operating systems
5. on Data bases and their alignment tools

II. Syllabus
Unit 1 Descriptive Statistics
1. Methods of presentation and interpretation of data – frequency distribution, graphical representation of data, histogram, frequency polygon, frequency curve.
2. Measures of Central tendency – mean, median, mode

Unit 2 Elementary Probability
1. Mathematical definition of probability of an event, Use of permutations and combinations in calculations of Probability
2. Conditional probability, Additive and Multiplication law of Probability, Random Variables, Mathematical expectation and variances
4. Bayes theorem

Unit 3 Correlation analysis, test of significance and ANOVA
1. Correlation and regression analysis— Relationship between variables
2. Test of significance – statistical and scientific hypothesis, null and alternative hypothesis, procedure of hypothesis testing,
3. Test of significance – student’s t test, chi-square test, F test
4. ANOVA – general idea of one way and two way analysis

Unit 4 Computers, operating systems and Internet
1. Principles of computer operations – basic computer architecture, hardware architecture
2. Principles of computer operations – software architecture, operating systems, Programming languages – traditional and scripting languages, Java, markup languages, application programs
3. Communication and Networks – network architecture, standards for exchange of information, internet services - email, WWW search engines

Unit 5 Bioinformatics

1. History of Bioinformatics
2. Databases and search tools – NCBI, EBI, GenomeNet; Databasemining tools –BLAST
3. Database archives – nucleic acid sequence databases, genome databases and genome browsers, protein sequence databases, databases of protein families, databases of structures, expression and proteomic databases, bibliographic databases
4. Gateways to archives – ENTREZ, PIR, ExPASy

III. Skill Outcomes

On successful completion of practical course students shall be able to

1. Learn Frequency Distributions And Measures Of Central Tendency
2. Learn The Hypothesis Regarding Mean
3. Learn Sequence Retrieval From Different Data Bases
4. Learn The Internet Basics
SEMESTER-III

COURSE 9: STATISTICS AND INFORMATICS IN HUMAN GENETICS

Practical Credits: 1 2 hrs/week

IV. PRACTICAL Hours

1. Frequency distribution
2. Various types of graphs
3. Mean, Median, Mode
4. Standard deviation, variance and coefficient of variation
5. Testing of hypotheses regarding population mean
6. Testing of hypotheses about the difference between population means
7. Chi-square test
8. Testing of Correlation Coefficient
9. Fitting of simple linear regression
10. One-way ANOVA & Two-way ANOVA
11. Internet basics
12. Sequence retrieval (protein and gene) from NCBI, Structure download (protein andDNA) from PDB
13. Molecular file formats - FASTA, GenBank, Genpept, GCG, CLUSTAL, SwissProt, FIR

V. Suggested Readings

VI. Co-curricular Activities

a) Suggested Co-curricular Activities
1. Assignments
2. Group Discussions And Seminar On Related Topics
3. Sequence Retrieval From Data Bases
4. Search Engines And Tools
I. LEARNING OUTCOMES

Upon successful completion, each student will have the basic knowledge:
1. On Single Gene Disorders
2. On Metabolic Disorders
3. On Genome Imprinting and Neurodegenerative Disorders
4. On Blood Disorders and Polygenic Syndromes
5. On Genetic Counselling and Their Risk Factors

II. Syllabus

Unit-1 Genetic Disorders I

1. Monogenic diseases – Cystic fibrosis, Tay-Sachs syndrome, Marfan syndrome
2. Inborn errors of metabolism – Phenylketonuria, Maple syrup urine syndrome, galactosemia
3. Genome imprinting syndromes – Prader Willi and Angelman syndrome

Unit-2 Genetic Disorders II

1. Genomic syndromes – Neurofibromatosis I
2. Neurogenetic disorders – Charcot Marie Tooth syndrome, spinal muscular atrophy, Alzheimer’s diseases, syndromes due to triplet nucleotide expansion
3. Muscle genetic disorders – dystrophies, myotonias, myopathies

Unit-3 Genetic Disorders III

1. Genetic Disorders of Haemopoietic systems- sickle cell anaemia, thalassemia’s, haemophilia
2. Genetic disorders of eye – colour-blindness, retinitis pigmentosa, glaucoma
3. Complex polygenic syndromes – atherosclerosis, diabetes mellitus
4. Mitochondrial syndromes

Unit-4 Genetic Counselling

1. Role of genetic counselling
2. Causes and factors for seeking counselling
3. Dysmorphology
4. Prenatal and preimplantation diagnosis
Unit-5 Practical Genetic Counselling

1. Process of genetic counselling - Constructing a family tree, diagnostic information, risks and odds, estimation of risks
2. Genetic counselling in Mendelian disorders
3. Genetic counselling in non-Mendelian disorders
4. Ethical and legal issues in genetic counselling

III. Skill Outcomes

On successful completion of practical course students shall be able to

1. Learn Metaphase Chromosome Preparations
2. Learn Banding Techniques
3. Sex Chromatin Analysis from Different Sources
4. Learn Different Biochemical Tests
SEMESTER-IV
COURSE 10: CLINICAL GENETICS & GENETIC COUNSELLING

Practical Credits: 1 2 hrs/week

IV. Practical

1. Metaphase chromosome preparations from bone marrow of mouse, rat, human
2. Chromosome preparation from lymphocyte culture
3. G-banding, C-banding, R-banding
4. Karyotyping
5. Meiosis in mouse testis
6. Sex chromatin (buccal mucosa, hair bud)
7. Micronuclei assay
8. Chromosome preparation from chorionic villi, stem cells, cell line
9. Sister Chromatid Exchange (SCE)
10. Molecular markers for tumour detection
11. Genetic counseling (pedigree analysis in disease conditions, risk calculation)
12. Y-chromosome microdeletion
13. Biochemical tests for sugar, albumin, Creatine phosphokinase-CPK, glucose 6 phosphate dehydrogenase-G6PD

V. SUGGESTED READINGS

2. Thompson and Thompson & Thompson Genetics in Medicine, Robert L. Nussbaum, Roderick R. McInnes, Huntington F. Willard (eds)

VI. Co-curricular Activities

a) Suggested Co-curricular Activities
1. Assignments
2. Group Discussions and Seminar On Related Topics
3. Debate on Different Disorders
4. Visit to Near Genetic Counselling Center
5. Visit to Cytogenetic Labs
I. LEARNING OUTCOMES

Upon successful completion, each student will have the basic knowledge:
1. On Germ Cells And Fertilization
2. On Different Development Genes
3. On Basic Concepts Of Development
4. Embryonic Development Of Drosophila
5. Flower Development Of Arabidopsis
6. On Genetic Control Of Behavior

II. Syllabus

UNIT-1: Germ Cells and Fertilization
1. Germ Cells
2. Spermatogenesis, Oogenesis
3. Fertilization and Gastrulation

UNIT-2: Basic & Molecular Aspects of Development
1. Potency, commitment, specification, induction, competence
2. Maternal effect gene Gap gene, Pair rule gene
3. Segment polarity genes, Homeotic genes

UNIT-3: Genetics of Embryonic Development in Drosophila
1. Overview of Drosophila development
2. Zygotic genes
3. Segment formation

UNIT-4: Flower Development in Arabidopsis
1. Development of Arabidopsis
2. Role of Homeotic Selector Gene
3. ABC model of Arabidopsis
UNIT-5: Genetic Control Of Behavior

1. Introduction, Behavior in Invertebrates, Honeybee,

3. Courtship behavior in various animals.

III. Skill Outcomes

On successful completion of the practical course students shall be able to

1. Learn Dissection of Drosophila Larvae

2. Development of Chick Embryo

3. Role of SHH Signaling
SEMMESTER-IV
COURSE 11: DEVELOPMENTAL AND BEHAVIORAL GENETICS

Practical Credits: 1 2 hrs/week

IV. Practical Syllabus Hours

1. Study of development in chick embryo
2. Dissection of the imaginal disc in Drosophila larvae
3. Life cycle of drosophila, husbandry and handling.
4. Role of SHH signaling in chick development
5. Observation of living and plastic embedded chick embryos
6. The maternal effect gene in drosophila

V. REFERENCES

1. The cell – Bruce Alberts
3. Principles of Development - Wolpert
4. Principles of Genetics – Snustad, Simmons, Jenkins.

Co-curricular Activities

a) Suggested Co-curricular Activities
1. Assignments
2. Group Discussions and Seminar On Related Topics
3. Power Point Presentation on Developmental Genes
I. LEARNING OUTCOMES

Upon successful completion, each student will have the basic knowledge:
1. On Genome Organization
2. On Different Mapping Techniques
3. On Human Genome Project
4. On Genome By Understanding The Function Of Genes
5. On Molecular Phylogenetics

II. Syllabus

UNIT 1 GENOME ORGANIZATION AND STUDY
1. Genome – general features, features of eukaryotic nuclear genomes
2. Genomes, transcriptomes and proteomes

UNIT 2 MAPPING GENOMES
1. Genetic mapping – pedigree analysis, DNA markers – RFLPs, SSLPs, SNPs
2. Physical mapping – restriction mapping, FISH, radiation hybrid mapping, STS mapping
3. Sequencing genome- assembly of contiguous DNA sequence, shotgun method, clonecontigmethod, whole-genome shotgun sequencing

UNIT 3 GENOME PROJECTS
1. Human genome project, HapMap Project, 1000 genome project, ENCODE project
2. Other genome projects.
3. Applications and proposed benefits of HGP –ELSI.

UNIT 4 UNDERSTANDING GENOME SEQUENCE
1. Locating the genes in a genome sequence
2. Determining the functions of individual genes
3. Transcriptome – microarrays, Proteome – protein profiling

UNIT 5 MOLECULAR PHYLOGENETICS
1. Phenetics and cladistics
2. Reconstruction of DNA based phylogenetic tree
3. Applications of molecular phylogenetics – evolutionary relationship betweenhumans and primates; origin of AIDS; human pre - history.
III. Skill Outcomes

On successful completion of practical course students shall be able to:

1. Purification Techniques
2. PCR
3. Sequence Alignment Techniques
4. Gene Finding Tools
5. Proteomics
SEMESTER-V
COURSE 12: HUMAN GENOME PROJECT AND GENOMES

Practical Credits: 1 2 hrs/week

IV. PRACTICAL

1. Isolation and purification of genomic DNA.
2. Detection of SNPs using SNP specific primers and PCR.
3. Study of VNTR’s in human genome as the polymorphic loci.
4. Design primers for PCR based detection of the gene and mapping primers on the genome
5. Introduction to NCBI websites
6. Introduction to databases: protein data bank, nucleic acid database, Genbank.
7. Web based analysis to retrieve a nucleotide sequence from NCBI.
8. Sequence alignment using BLASTn, BLASTp, CLUSTALW.
9. Gene finding tools – GenScan, GLIMMER
10. Introduction to proteomics – ProtParam, GOR, unPredict, SWISSMODEL.
11. Visualization software – Rasmol
12. Generating phylogenetic tree using PHYLIP

V. SUGGESTED READINGS

1. Human Genome Project by James Toriello.
2. Understanding the Human Genome Project by Michael A Palladino.
5. Genomes 3 by Terence A Brown.

VI. Co-curricular Activities

 a) Suggested Co-curricular Activities
 1. Assignments
 2. Group Discussions and Seminar On Related Topics
 3. Visit to Bioinformatics Lab
 4. Conduction of Workshop And Guest Lecture Related To Bioinformatics
SEMESTER-V
COURSE 13: CELLULAR AND MOLECULAR IMMUNOLOGY

TheoryCredits: 33 hrs/week

I. LEARNING OUTCOMES

Upon successful completion, each student will have the basic knowledge:
1. On Vaccines
2. On Immunity
3. On Monoclonal Antibody
4. On Presentation And Processing Of Cells
5. On Immunological Techniques

II. Syllabus

Unit 1

I. Introduction to Immune System, types of immunity-innate and adaptive
2. Cellular components of immunity — Lymphoid cells, Myeloid cells
3. Lymphoid organs- Primary lymphoid organs (Bone marrow & thymus); secondary lymphoid organs (lymph node and spleen)

Unit 2

1. Antigens- Immunogens, epitopes, Haptens and types of adjuvants
2. Humoral and MHC immune responses
3. Basic structure of Immunoglobulin- Immunoglobulin domains-variable region and constant region domains; isotypes, allotypes, idiotypes, Immunoglobulin classes and its functions- IgG, IgM, IgA, IgD, IgE

Unit -3

1. Polyclonal antibodies, Monoclonal antibodies- its production and applications
2. Structure and organization of MHC class I and class II molecules.
3. Cell-mediated Immunity, Hypersensitivity- Types (I, II, III & IV)
4. Immunodeficiency disorders- primary immunodeficiency disorders (SCID), secondary immunodeficiency disorders (AIDS)

Unit -4

1. Vaccines- historical background and principle; passive & active immunization, attributes of effective vaccines
2. Types of vaccines- live attenuated and inactivated killed vaccines, sub-unit vaccines, DNA vaccines, edible vaccines
Unit-5
1. General features of ag-ab reactions- Agglutination, neutralization, complement fixation, opsonisation. Immunoprecipitation, immunoelectrophoresis, immunodiffusion Tests
2. ELISA — Types , Immuno fluorescence assays (direct & indirect) Principle and applications
3. Western blot -Principle, procedure and applications , Flow cytometry -Principle, methodology and applications

III. Skill Outcomes
On successful completion of the practical course students shall be able to
1. Blood Grouping
2. Immunological Technique
SEMESTER-V

COURSE 13: CELLULAR AND MOLECULAR IMMUNOLOGY

Practical Credits: 1 2 hrs/week

IV Practical’s
1. ABO blood typing
2. Differential count of lymphocytes
3. Single Radial Immunodiffusion
4. ELISA
5. Agglutination
6. Haemagglutination test
7. Coomb’s test
8. Western Blot

V. References
1. Essential Immunology by I.Roitt, Publ: Blackwell
2. Immunology by G. Reever & I.Todd, Publ: Blackwell
3. Immuno diagnostics by S.C. Rastogi, Publ: NewAge
4. Immunology by Richard A. Golds by, Thomas J Kindt, Barbara. Osborne,
5. Janiskuby
6. Fundamental immunology by William E. Paul
7. Basic Immunology by Bhoosreddy G.L. and WadherB.J.
8. Text book of immunology by Baruj Benacerraf
9. Immunology by Kuby: Publ: Freeman

VI. Co-Curricular Activities
1. Assignments.
2. Charts on complement pathway, MHC I & II
3. Group discussions and Student seminars.
4. Visit to diagnostic labs
SEMESTER-V

COURSE 14 A: INTRODUCTION TO STEM CELL TECHNOLOGY

Theory Credits: 3 3 hrs/week

I. LEARNING OUTCOMES

Upon successful completion, each student will have the basic knowledge:
1. Familiarize the students with stem cell technology and its applications for betterment of the society.
2. Designed to give a broad view of mammalian stem cells, reviewing where they are found in the body, the different types and how they are cultured.
3. Will cover the basic biology of these stem cells
4. In bioengineering and application of these stem cells to potential treatments of human diseases.
5. Understanding preservation of cells using cryoprotectants

II. Syllabus

UNIT-I

1. Introduction to stem cells Definition, properties, proliferation, culture of stem cells,
2. Medical applications of stem cells, ethical and legal issues in use of stem cells. Types of stem cells. Stem Cell biology and therapy, types embryonic stem cell, Adult stem cell, Stem Cell Biology and Therapy
3. Embryonic Stem Cells, culture and the potential benefits of stem cell technology

UNIT-II

1. Isolation of human Embryonic stem cells, generation of human induced pluripotent stem cells.
2. History of human pluripotent stem cell development.
3. Methodologies for pluripotent stem cell culture, characterization of pluripotency and differentiation into different lineages.

UNIT-III

1. Ethical and regulatory issues affective pluripotent stem cell-based cell replacement therapies.
2. Technological challenges towards development of pluripotent stem cells
UNIT-IV

1. Principles of cell replacement therapy and application of pluripotent stem cells in cell replacement therapy.

UNIT-V

1. Introduction and Historical Background of Cryopreservation
3. Principles of Cryopreservation, Effects of Freezing on Cells, Thawing & Post Thaw Handling, Cryoprotectants

III. Skill Outcomes
On successful completion of the practical course students shall be able to
1. Learn isolation of stem cells from different tissues/ organs
2. Learn about stem cell counting
3. Learn in-vitro fertilization techniques
SEMESTER-V
COURSE 14 A: INTRODUCTION TO STEM CELL TECHNOLOGY
Practical Credits: 1 2 hrs/week

IV. PRACTICAL
1. Isolation of stem cell from cord blood /bone marrow /adipose tissue /cord tissue /endometrial tissue
2. Stem cell counting and viability checking
3. Cell proliferation assay
4. Growth curve and PDT analysis
5. Characterization of stem cells
6. Embryo culture and in-vitro fertilization techniques
7. Embroid body formation
8. Differentiation of stem cells into various lineages
9. Cancer stem cell- isolation
10. Case studies of stem cell therapy for various diseases

V. REFERENCES
8. Stem Cell and Gene-Based Therapy: Frontiers in Regenerative Medicine, Alexander Battler,

VI. Co-Curricular Activities
1. Assignments.
2. charts on types of stem cells
3. Group discussions and Student seminars.
4. Power point presentation
SEMESTER-V

COURSE 14 B: MICROBIAL GENETICS

Theory Credits: 3 3 hrs/week

I. LEARNING OUTCOMES

Upon successful completion, each student will have the basic knowledge:
1. On Cell Organelles And Cell Division
2. Concept Of Gene, Operons
3. On Principles Of Genetic Engineering
4. Concepts Of Mutations
5. Gene Cloning Methods

II. Syllabus

UNIT -I

1. Overview of prokaryotic and eukaryotic cells, cell size and shape, Eukaryotic and prokaryotic cell organelles, Cell division (mitosis and Meiosis)
2. Fundamentals of genetics - Mendelian laws, alleles, crossing over, and linkage. DNA and RNA as genetic materials.

UNIT -II (9hr)

1. Brief account on horizontal gene transfer among bacteria — transformation, transduction and conjugation.
3. Outlines of DNA damage and repair mechanisms.

UNIT – III

1. Concept of gene — Muton, recon and cistron. One gene-one enzyme, one gene-one polypeptide, one gene-one product hypotheses.
2. Types of RNA and their functions. Outlines of RNA biosynthesis in prokaryotes.
UNIT -IV
1. Types of genes — structural, constitutive, regulatory. Operon concept.
2. Regulation of gene expression in bacteria — Lac operon
3. Tryptophan operon and Arabinose operon

UNIT-V
1. Basic principles of genetic engineering - restriction endonucleases, DNA polymerasesand ligases, vectors.
3. General account on application of genetic engineering in industry, agriculture and medicine.

III. Skill Outcomes
On successful completion of the practical course students shall be able to
1. Isolation of DNA
2. Quantifications of DNA/RNA
3. Problems related to Mendelian disorders
SEMESTER-V
COURSE 14 B: MICROBIAL GENETICS

Practical Credits: 1 2 hrs/week

IV. Practical

1. Estimation DNA by diphenylamine (DPA) method.
2. Estimation of RNA by orcinol method
3. Study of cell division in onion root tip (mitotic divisions)
4. Isolation of DNA from bacteria.
5. Isolation of mutants of bacteria by UV exposure.
6. Problems related to Mendelian laws mono and dihybrid cross (problems)
7. Problems related to gene interactions
8. Problems related to DNA and RNA characteristics, Transcription and Translation.

V. References:

1. Genes XI, Author- B. Lewin.
2. Principles of Genetics, Authors- Gardner, Simmons and Snustad.
3. Concepts of Genetics, Authors- Klug and Cummings.
4. Microbial Genetics, Authors- Freifelder.
5. Genetics, Authors- Arora and Sandhu.
6. Text of Microbiology, Authors- Ananthanarayanan and Paniker.
7. S R Maloy, D Freifelder and J E Cronan. Microbial Genetics. Jones and Barlett

VI. Co-curricular Activities

a) Suggested Co-curricular Activities

1. Assignments
2. Group Discussions and Seminar on related topics
3. Power point presentation on protein synthesis, replication, transcription
4. Charts on operon concept
I. Learning Outcomes

Upon successful completion, each student will have the basic knowledge:
1. Understand the underlying principles of DNA for use in forensic studies
2. Develop scientific temper on DNA
3. Analyse and evaluate forensic problems using biochemical methods
4. Identify and suggest means for forensic problems
5. In Techniques in forensic Analysis

II. Syllabus

Unit I Introduction
 History & development of Forensic science.
3. The organizational structure of Forensic Science Laboratories at the central & State level. Ethics in Forensic science.

Unit II DNA Biology

1. Principles of DNA structure - DNA in the cell, Organisation of Information in the cell,
2. Identification of DNA information, DNA variation (SNP), Short Tandem Repeat (STR) Markers

Unit III DNA technology in Forensic Science

1. Introduction, individual Variation in DNA, DNA Typing- Genetic basis of DNA typing structure and function of DNA,
2. Technological basis of DNA typing - Restriction Fragment Length Polymorphisms,
3. PCR-based typing methods such as RAPD, AFLP, STR.

Unit IV Forensic Analysis

1. Enzymes used in Forensic Science - Restriction enzymes, Phosphatases, DNA polymerases, and DNA ligases, and their forensic significance.
2. Forensic Serology – Blood, Saliva, Urine, Bone, Teeth, Hair, and other body fluids.
3. Forensic Immunology – ELISA, Blood group-specific ABO substances.

Unit V Techniques used in Forensic Analysis

1. Use of Thin-layer chromatography - TLC, Gas Chromatography (GC), High-Performance Liquid Chromatography (HPLC).
2. Ultraviolet and visible spectrophotometer.
3. Immunoassays in Forensic analysis.

III. Skill Outcomes
On successful completion of the practical course students shall be able to
1. Apply the different types of techniques that make use of DNA for analysing Forensic sample2: Analysis of sample found as evidence.
SEMESTER-V
COURSE 15 A: FORENSIC SCIENCE

Practical Credits: 1 2 hrs/week

IV. Practical
1. Extraction and purification of DNA from various samples - Hair, Saliva, dried blood samples
2. Analysis of DNA sample – RFLP
3. Demonstration of DNA Amplification technique – AFLP.
4. Determination of Blood group substances in body fluids.
5. Radio Immunoassay

V. References
2. Ethics in Forensic Science: Professional Standards for the Practice of Criminalistics by Peter D. Barnett.
5. Principles of Forensic Medicine and Toxicology by Rajesh Bardale.

VI. Co-Curricular Activities
a. Suggested Co-curricular Activities
1. Assignments.
2. Chart preparations.
3. Group discussions on case studies.
4. Student seminars
1. Learning Outcomes:
Upon successful completion, each student will have the basic knowledge:
1. The significance of biological and serological evidence.
2. The forensic importance of hair evidence.
3. The importance of biological fluids – blood, urine, semen, saliva, sweat and milk – in crime investigations.
4. The importance of bloodstain patterns in reconstructing the crime scene.
5. On parentage testing

II. Syllabus

Unit 1: Biological Evidence

2. Types and identification of microbial organisms of forensic significance.

Unit 2: Forensic Importance of Body Fluids I

1. Identification of body fluids. Composition and functions and forensic significance of Blood & Semen, saliva, sweat, milk and urine. Tests for their identifications
3. Semen - Composition, functions and morphology of spermatozoa. Collection, evaluation and tests for identification of semen. Individualization on the basis of semen examination

UNIT-3 Bloodstain Pattern analysis

UNIT-4 Genetic Marker Analysis

1. Cellular antigens. ABO blood groups.
2. Extracellular proteins and intracellular enzymes.
3. Significance of genetic marker typing data. Sexual assault investigations

UNIT-5 FORENSIC DNA TYPING AND PARENTAGE TESTING

1. Collection of specimens, Extraction of DNA For analysis
2. Polymerase chain reaction, sequence polymorphisms, individualization of evidence, Restriction fragment length polymorphism (RFLP) – genetic markers used in RFLP, typing procedure and interpretation of result.
3. DNA Testing in disputed Paternity, Mendelian laws of parentage testing.

III. Skill Outcomes
On successful completion of the practical course students shall be able to

1. Learn How To Collect And Store Blood Samples
2. Blood Grouping
3. Learn Gel Plates Preparation
IV. Practical’s
1. To carry out the separation of amino acids by thin layer chromatography.
2. To carry out extraction of DNA from body fluids.
3. To prepare gel plates for electrophoresis.
4. To prepare a report on the role of DNA typing in solving paternity disputes.
5. To determine blood group from fresh blood samples.
6. To determine blood group from dried blood sample.
7. To carry out the crystal test on a blood sample.
8. To identify blood samples by chemical tests.
9. To identify the given stain as saliva.
10. To identify the given stain as urine.

V. References

VI. Co-Curricular Activities
1. Assignments.
2. Visit to Forensic Laboratory.
3. Group discussions and Student seminars.
4. Power point presentation.
Learning Outcomes:
Students after successful completion of the course will be able to

LO1: Understand the chemical constituents of cell
LO2: Understand cell structure and organization
LO3: Apprehend various functions carried out by cell organelles which are necessary to maintain the homeostasis in the cell
LO4: Perceive cellular communications and different phases of cell cycle and cell death
LO5: Appreciate the ways by which cell transmits signals with itself and with the environment

Unit 1 Introduction
Origin and development of cell biology; Dimensions of size and weight - Micron to angstrom, Microgram to picogram; Ultra structure and organization of prokaryotic and eukaryotic cells; Unicellular eukaryotic model organisms – Yeast, Chlamydomonas reinhardtii, Plasmodium

Unit 2 Cell Structure and Organization

Unit 3 Intracellular Cell Organelles
Structural organization and function of cell wall, Nucleus, Mitochondria, Golgi bodies, Endoplasmic reticulum, Ribosomes, Lysosomes, Peroxisomes, Vesicles, Chloroplasts, Plastids, Vacuoles

Unit 4 Cell Communication
Types of cell junctions – Occluding junctions, Anchoring junctions, Communicating junctions; Cell adhesion molecules – Cadherins, Selectins, Integrins, Extra cellular matrix; Neurotransmission and its regulation; Cell division; Regulation of cell cycle; Apoptosis

Unit 5 Cell Signaling
Forms of cell signaling; Types of receptors - Cell surface receptors; Enzyme linked receptors, G-protein linked receptors; Second messengers; Signal transduction pathways; Regulation of signaling pathways

Suggested Readings
SEMESTER-VII
COURSE 16 A: CELL BIOLOGY

Practical Credits: 1 2 hrs/week

Learning Outcomes:
Students after successful completion of the practical course will be able to

LO1: Differentiate between prokaryotic and eukaryotic cell
LO2: Understand the importance of the proteins which give shape and structure to the cells
LO3: Identify all the cell organelles
LO4: Apprehend the different stages in mitosis
LO5: Realize how haploid cells are formed during meiosis

1. Electron microscope pictures of prokaryotic and eukaryotic cells
2. Images of cytoskeleton
3. Electron microscope pictures of chloroplast and mitochondria
4. Electron microscope pictures of endoplasmic reticulum, golgi apparatus
5. Preparation of slides and identification of different stages of mitosis (root tips)
6. Preparation of slides and identification of different stages of meiosis

Suggested Readings
SEMESTER-VII
COURSE 16 B: ECOLOGY AND CONSERVATION GENETICS

Learning Outcomes:
Students after successful completion of the course will be able to

LO1: Acquire knowledge about the types of ecosystem
LO2: Understand the process of bioremediation and phytoremediation
LO3: Understand the micro evolution forces that influence genetic change in populations
LO4: Apprehend strategies of biodiversity conservation
LO5: Appreciate genetic management of wild populations

Unit 1 Ecosystem Ecology
Ecology- Habitat and Niche, Species interaction; Ecosystem - Components, Types, Functions, Energy flow, Biogeochemical cycles (Carbon cycle, Nitrogen cycle, Phosphorous cycle, Sulfur cycle).

Unit 2 Community Ecology
Ecological genetics; Gene flow; Landscape genetics; Sewall wright effect; Neutral vs adaptive genetic variation; Bioremediation and phytoremediation; Nature and structure of community ecology; Edges and ecotones.

Unit 3 Biodiversity Conservation
Principles and strategies of biodiversity conservation; In-situ and ex-situ conservation; Biodiversity hot spots; Biospheres; National parks and wildlife sanctuaries; Gene bank; Genetic bottlenecks and founder effects; Minimum effective population sizes and conservation of genetic diversity.

Unit 4 Population Fragmentation and Loss of Genetic Diversity
Genetic management of population fragmentation and loss of genetic diversity - Genetic viability, Metapopulation, Introgression and hybridization, Impacts of hybridization; Genetic issues in reserve design, Importance of corridors.

Unit 5 Genetic Management of Wild Populations
Genetic adaptation - Success and management in reintroduction and translocation; Taxonomic unit vs management units; Diagnosing genetic problems and recovery measures; Supportive breeding polymorphism and population survival, Polymorphic nucleotide markers and small RNA based taxonomic distinction.

Suggested Readings
SEMESTER-VII
COURSE 16 B: ECOLOGY AND CONSERVATION GENETICS

Practical Credits: 1 2 hrs/week

Learning Outcomes:
Students after successful completion of the practical course will be able to

LO1: Determine diversity indices in plant communities
LO2: Construct ecological pyramids of populations in different trophic levels of an ecosystem
LO3: Determine chlorophyll content and harvest method from plant species
LO4: Identify plant species basing on the anatomical and morphological clues
LO5: Plot biosphere reserve on India map

1. Determination of diversity indices in plant communities
2. To construct ecological pyramids of population sizes in ecosystem
3. Determination of chlorophyll content from plant species
4. Determination of harvest method from plant species
5. Prepare a map of India, showing bio-geographical zones and expanse of territorial waters
6. Identification and description of plant species
7. To plot biosphere reserve on a map of India
8. Prepare a document of endemic and exotic species of plants and animals for a selected PAN

Suggested Readings
5. S.S. Negi, (1996), *Biosphere reserves in India*
SEMESTER-VII

COURSE 17 A: BIOMOLECULES

Theory Credits: 3 3 hrs/week

Learning Outcomes:
Students after successful completion of the course will be able to

LO1: Acquire an insight into various biomolecules which constitute the living organisms
LO2: Learn the structure and properties of carbohydrates
LO3: Grasp the structure, properties, transport and function of lipids
LO4: Perceive the structure of proteins and nucleic acids
LO5: Gain knowledge about enzymes, their activity and applications

Unit 1 Carbohydrates
Configurational and conformational aspects of carbohydrates (Asymmetry, Optical isomerism, Mutarotation); General structure of monosaccharides, Disaccharides, Oligosaccharides (N-linked, O-linked and GPI linked), Homo polysaccharides (Starch, Glycogen, Cellulose, Chitin), Hetero polysaccharides (Glycosaminoglycans, Peptidoglycans), Glycoproteins.

Unit 2 Lipids
Classification, Structure and chemical properties; Saturated and unsaturated fatty acids; Structure and functions of triacylglycerol, Phospholipids, Glycolipids, Sphingolipids; Structure and functions of eicasanoids (Prostaglandins, Prostacyclins, Thrombaxanes, Leukotriens); Lipoproteins types, Transport and functions; Biological functions of steroids and carotenoids.

Unit 3 Amino acids and Proteins
Configurational and conformational properties of amino acids; Classification of amino acids (Standard and non– standard); Levels of protein organization (Primary, Secondary, Tertiary, Quaternary); Sequence determination - Ramachandran plot; Fibrous and globular proteins (Collagen, Elastin, Keratins, Myoglobin, Hemoglobin); Protein folding and dynamics - Molecular chaperones; Protein denaturation (pH, Temperature, Chaotropic agents).

Unit 4 Nucleic acids
Double helical structure of DNA (Watson-Crick model), Factors affecting DNA stability, Various forms of DNA; Thermal denaturation of DNA; Structure and types of RNA (Ribosomal RNA, Transfer RNA, Messenger RNA, Small nuclear RNA); DNA-RNA hybrid helices.

Unit 5 Enzymes
Classification and nomenclature; Role of enzymes as biocatalysts; Specificity and kinetics; Assay and inhibition of enzyme activity; Mechanism of action; Regulation of enzyme activity; Coenzyme and cofactors; Active site mapping; Allosteric enzyme; Isoenzymes; Multienzyme systems; Industrial and clinical applications of enzymes; Immobilised enzymes; Enzyme engineering; Zymogen; Ribozymes.
Suggested Readings

8. J. David Rawn, (1989), *Biochemistry*
SEMESTER-VII
COURSE 17 A: BIOMOLECULES

Learning Outcomes:
Students after successful completion of the practical course will be able to

LO1: Extract biomolecules from different sources
LO2: Estimate the amount of protein in a sample
LO3: Estimate the total carbohydrates in a sample
LO4: Separate and identify a combination of amino acids
LO5: Separate and identify lipids

1. Extraction of starch from potato
2. Extraction of casein from milk
3. Extraction of oil from oil seeds
4. Estimation of protein by Lowry’s method
5. Estimation of total carbohydrates by anthrone method
6. Estimation of reducing sugars by Benedict’s titrimetric method
7. Separation of amino acids by paper chromatography
8. Separation of sugars by thin layer chromatography
9. Separation of lipids by thin layer chromatography

Suggested Readings

1. B.Sashidhar Rao, Vijay Deshpande, (2005), Experimental Biochemistry
8. Sadasivam and Manikam, (1986), Biochemical Methods, Wiley Eastern Limited
SEMESTER-VII
COURSE 17 B: HUMAN EMBRYOLOGY AND DEVELOPMENTAL GENETICS

Learning Outcomes:
Students after successful completion of the course will be able to

LO1: Learn basic concepts of development
LO2: Distinguish the stages of pre implantation embryonic development
LO3: Explain the formation of placenta and organogenesis
LO4: Have an insight into the genes involved in embryonic development
LO5: Understand what are embryonic stem cells and their applications

Unit 1 Concepts of Development
Potency, Commitment, Specification, Induction, Competence, Determination and differentiation; Morphogenetic gradients - examples; Pattern formation, Cell fate, Cell lineages; Cytoplasmic determinants role; Cell division; Mosaic versus regulative development; Genomic imprinting - Molecular mechanism ; Developmental significance

Unit 2 Reproductive Endocrinology and Early Embryogenesis
Human reproductive organs - Structure and functions; Reproductive endocrinology; Early Embryogenesis - Differentiation of germ cells, Gametogenesis; Fertilization, and molecular events during fertilization; Cleavage, blastocyst development and implantation.

Unit 3 Embryogenesis
Gastrulation - Types, Formation of germ layers and significance; Neurulation - Different stages, Primary and secondary neurulation, Rastro-caudal events; Placentation - Placenta development, Types, Function, Significance; Organogenesis mechanism; Stages of pregnancy.

Unit 4 Gene Expression Regulation During Development
Role of key developmental genes - Polycomb gene, P granules, SOX, BMP, HOX and PAX; Control of embryonic gene expression and epigenetics; Epigenetic regulation, Regeneration and senescence; Teratogenesis; Congenital malformations; Sex differentiation and its errors; Genetic basis of male and female infertility and assisted reproductive technology.

Unit 5 Embryonic Stem Cells
Embryonic stem cells - Characterization and differentiation; Genetic modifications of human embryonic stem cells; Applications of embryonic stem cells - Regenerative medicine, Drug discovery, Modeling genetic diseases; Pros and cons of embryonic stem cell research.
Suggested Readings

SEMESTER-VII
COURSE 17 B: HUMAN EMBRYOLOGY AND DEVELOPMENTAL GENETICS
Practical Credits: 1 2 hrs/week

Learning Outcomes:
Students after successful completion of the practical course will be able to
LO1: Understand the structure and function of the reproductive organs
LO2: Identify the stages of gamete development
LO3: Describe the formation of germ layers and the differentiation of their cells into organs
LO4: Apprehend the week - by week changes of the pregnancy
LO5: Understand post natal development and identify birth defects which result due to inborn errors of development

1. Structure and functions of male and female reproductive organs
3. T.S of blastula through permanent slides.
4. Demonstration of embryology models/specimens to observe embryogenesis.
5. Fetal development in terms of stages of pregnancy (Ultrasound pictures).

Suggested Readings
4. Lawrence Impey, Tim child, (2017), Obstetrics and Gynecology
5. Eliezer Girish ,(2021), A text Book of Clinical Embryology
SEMMETER-VII
COURSE 18 A: HUMAN ANATOMY

Learning Outcomes:
Students after successful completion of the course will be able to

LO1: Understand the structure and classification of bones and muscles
LO2: Acquire knowledge regarding the structure of heart and blood circulation
LO3: Gain factual knowledge on respiratory and gastrointestinal system
LO4: Get an insight of structure and components of reproductive, excretory and endocrine systems
LO5: Familiarize with parts of nervous system and sensory organs

Unit 1 Anatomy of Musculoskeletal System
Classification and histology of bones; Ossification, Structure and classification of joints; Classification of muscles, Structure of smooth, cardiac, skeletal muscle, neuromuscular junction. Integumentary system: Thick Skin, Thin skin, Layers of dermis, and epidermis, Skin appendages; Types of connective tissue.

Unit 2 Anatomy of Circulatory System
Morphology and classification of blood vessels, Blood capillaries; Blood circulation and composition; Lymphatic system - Lymph-nodes, Thoracic duct and spleen; Structure of heart, Cardiac cycle, Systemic and pulmonary circulation.

Unit 3 Anatomy of Respiratory and Gastrointestinal System
Anatomical description of respiratory system; Role of hemoglobin in respiration; Anatomy of Gastrointestinal system - Digestive system, Innervation of gastrointestinal tract, Accessory organs of digestion, Gastrointestinal hormones, Major digestive glands.

Unit 4 Anatomy of Excretory, Reproductive and Endocrine System
Anatomical description of excretory system; Brief anatomical description of male and female reproductive systems; Endocrine system- Structure and functions of hypothalamus, Pituitary, Thyroid, Parathyroid, Thymus, Pancreas, Adrenal glands, Pineal gland.

Unit 5 Anatomy of Nervous System and Sense Organs
Gross anatomy of brain and spinal cord; Cranial nerves, Spinal nerves, Autonomic nervous system, Nerve fibres; Anatomy of Eye, Ear, Nose, Skin and Touch receptors

Suggested Readings
SEMESTER-VII
COURSE 18 A: HUMAN ANATOMY

Practical Credits: 1 2 hrs/week

Learning Outcomes:
Students after successful completion of the practical course will be able to

LO1: Identify different tissues using a microscope
LO2: Identify the bones in skull
LO3: Identify vertebrae
LO4: Identify appendicular bones
LO5: Understand the different types of joints in human body

1. Identification of tissue slides- Epithelial tissue, Neuron, Muscular tissue, Cardiac tissue, blood
2. Identification of tissue slides – Cross section of an artery, Lung, Pancreas, Liver, Esophagus, Stomach and intestine
3. Identification of axial bones
4. Identification of appendicular bones
5. Overview of types of joints and movements at joints

Suggested Readings
1. Bhise S B, Yadav AV and Prakashan N, (2005), Human Anatomy and Physiology
3. Ramesh K Goyal, Elements of Human Anatomy Physiology and Health Education
SEMESTER-VII

COURSE 18 B: CELL CULTURE AND TISSUE ENGINEERING TECHNOLOGY

Theory Credits: 3 3 hrs/week

Learning Outcomes:
Students after successful completion of the course will be able to

LO1: Understand the basic requirements for cell culturing
LO2: Have theoretical knowledge about cell culturing techniques
LO3: Gain knowledge regarding the types and properties of tissues and tissue repair
LO4: Understand the key components and strategies employed in tissue engineering
LO5: Apprehend recent advances in tissue engineering and its applications

Unit 1 Fundamentals of Cell Culture
History of cell culture; Types of cell culture; Morphology of cells in cell culture; Equipment and materials for cell culture technology; Basic requirements for culture medium; Isolation of cells and culture conditions; Cell culture procedures.

Unit 2 Techniques in Cell Culture
Cell viability assays; Cell synchronization techniques; Maintenance and preservation of cell cultures; Cell line cross contamination; Decontamination of equipment; Disposal methods; Applications of cell culture.

Unit 3 Overview of Tissues
Tissue characteristics - Appearance, Cellular component, ECM component, Mechanical and physical properties; Tissue types; Tissue damage; Tissue repair.

Unit 4 Tissue Engineering
History of Tissue Engineering; Fundamentals of tissue engineering: Tissue engineering triad-Cells, Scaffold, Biofactors; Strategies in tissue engineering; In vitro control of tissue development; In vivo synthesis of tissues and organs.

Unit 5 Applications of Tissue Engineering
Recent advances in tissue engineering; Applications of tissue engineering; Challenges in tissue engineering; The future of tissue engineering.

Suggested Readings
SEMESTER-VII

COURSE 18 B: CELL CULTURE AND TISSUE ENGINEERING TECHNOLOGY

Practical Credits: 1 2 hrs/week

Learning Outcomes:
Students after successful completion of the practical course will be able to

- LO1: Understand the different cell culture techniques
- LO2: Prepare single cell suspension from different tissues
- LO3: Prepare cell culture media
- LO4: Culture animal cells
- LO5: Assay cell viability and growth

1. Demonstration of different types of cell culture techniques
 (Primary, infinite/secondary, Immortal / cell line)
2. Preparation of single cell suspension from spleen and thymus
3. Preparation of animal cell culture media and membrane filtration
4. Animal cell culture – Chick embryo
5. MIT assay for cell viability and growth

Suggested Readings
SEMESTER-VII
COURSE 19 A: MEDICAL GENETICS

Theory Credits: 3 3 hrs/week

Learning Outcomes:
Students after successful completion of the course will be able to

LO1: Understand the scope of Medical Genetics and able to differentiate between hereditary and multifactorial diseases.
LO2: Identify various diseases associated with different parts of human body
LO3: Obtain knowledge on wide range of neurological disabilities
LO4: Gain knowledge on the risk factors of different life style disorders and how to prevent them
LO5: Get deep insight into different autoimmune diseases

Unit 1
Scope of Medical Genetics; Skin- Ichthyosis, Ectodermal dysplasia, Eczema; Skeletal system – Ankylosing spondylitis, Osteogenesis imperfecta, Osteoporosis, Marfans syndrome; Muscle – Muscular dystrophies, Myopathies; Endocrine system Thyroid diseases, Cushing’s disease, Acromegaly.

Unit 2
Eye – Leber congenital amaurosis, Ocular albinism, Aniridia, Glaucoma, Retinoblastoma; Mouth – Hare Lip and cleft palate, Periodontitis, Amelogenesis imperfecta; Ears – Deafness, Usher syndrome, Otitis media, Otosclerosis; Respiratory system – Cystic Fibrosis; Asthma.

Unit 3
Cardiovascular System – Congenital heart disease; Cardiomyopathies, Familial hypercholesterolemia; Blood disorders- Anemias, Hemophilia, Blood cancers; Digestive System – Crohn’s Disease, Ulcerative colitis, Irritable bowel syndrome, Hypertrophic pyloric stenosis; Reproductive system- Polycystic ovary disease, Endometriosis, Gonadal dysgenesis.

Unit 4
Kidney and urogenital system – Chronic kidney disease, Nehpronophthisis, Polycystic kidney disease; Central nervous system – Spina bifida, Anencephaly; Neurodegenerative disorders- Parkinson’s disease, Alzheimer’s disease, Spinocerebellar ataxias; Neurocutaneous disorders- Multiple neurofibromatosis, Tuberous sclerosis; Neuromuscular disorders- Amyotrophic lateral sclerosis, Myasthenia gravis, Myotonia; Neurodevelopmental disorders - Autism, Attention deficit hyperactivity disorder.

Unit 5
Life style disorders- Diabetes, Hypertension, Hyperlipidemia, Coronary heart disease, Stroke, Obesity, Chronic obstructive pulmonary disease; Autoimmune disorders- Rheumatoid arthritis, Multiple sclerosis, Celiac disease, Systemic lupus erythematosus, Psoriasis, Vitiligo; Psychiatric disorders- Schizophrenia, Bipolar disorder.
Suggested Readings

1. Jorde et al., *Medical Genetics*
3. A. Sorsby, (1973), *Clinical Genetics*
SEMESTER-VII
COURSE 19 A: MEDICAL GENETICS

Practical Credits: 1 2 hrs/week

Learning Outcomes:
Students after successful completion of the practical course will be able to

LO1: Identify muscular dystrophy cases
LO2: Distinguish thyroid diseases
LO3: Familiarize with the symptoms of diabetes and hypertension
LO4: Recognize the symptoms of rheumatoid arthritis, an autoimmune disorder
LO5: Differentiate between the different neurodevelopmental disorders

Case Study Analysis
1. Muscular dystrophies
2. Thyroid diseases
3. Hare lip and cleft palate
4. Polycystic ovary disease
5. Multiple neurofibromatosis
6. Diabetes
7. Hypertension
8. Rheumatoid arthritis
9. Autism
10. Attention deficit hyperactive disorder
11. Schizophrenia

Suggested Readings
1. Jorde et al., Medical Genetics
2. M.W. Thompson et al., (2015), Genetics and Medicine
3. A. Sorsby, (1973), Clinical Genetics
4. R. M. Goodman, (1970), Genetic Disorders of Man

Co-curricular activities:

A. Mandatory: (Training of students by Teacher on field related skills:)

1. For Teacher

 1. Training of students by Teacher, in local hospitals on diagnosis of genetic diseases basing on symptoms
 2. Creating awareness on different types of disorders

2. For Student

 1. Charts preparation for different disorders (on symptoms, diagnosis, prevention,
management)
2. Individual visits to Government hospitals

B. Suggested co-curricular activities
1. To identify the genetic diseases from the given photographs
2. Interaction with patients and preparation of pedigree chart
3. Group discussion regarding management of genetic diseases
4. Invited lectures on related topics by Doctors and Genetic Counselors
SEMESTER-VII

COURSE 19 B: BIOCHEMICAL GENETICS

<table>
<thead>
<tr>
<th>Theory</th>
<th>Credits: 3</th>
<th>3 hrs/week</th>
</tr>
</thead>
</table>

Learning Outcomes:
Students after successful completion of the course will be able to
- **LO1**: Understand the concept of biochemical polymorphism
- **LO2**: Understand the clinical importance of serum enzymes
- **LO3**: Familiarize with different types of metabolic disorders
- **LO4**: Get an insight into the concept of oxidative stress and related disorders
- **LO5**: Perceive knowledge about homeostasis related disorders

Unit 1 Biochemical Polymorphism
Biochemical polymorphism - Concept, Types of polymorphisms (Transient and balanced), Blood groups (ABO, Rh and MN) and protein polymorphisms (Haptoglobin, Vitamin D binding protein); Structure, synthesis and functions of haemoglobin; Hemoglobinopathies - qualitative (Sickle cell anemia) and quantitative (Alpha and beta thalassemias) hemoglobinopathies

Unit 2 Classification and Nomenclature of Enzymes
Classification and nomenclature of enzymes; Enzyme kinetics, Clinical enzymology and its significance; Clinical importance of serum enzymes – Aspartate transaminase, Alanine transaminase, Alkaline phosphatase, Gamma-glutamyltransferase, Amylase, Lipase, Lactate dehydrogenase, Creatine phosphokinase and Acid phosphatase; Clinical importance of serum proteins - Albumin, Globulin, Transferrin and Ferritin.

Unit 3 Inborn Errors of Metabolism
Inborn errors of metabolism - Epidemiology, Pathogenesis, Characteristic features and classification; Galactosemia, Phenylketonuria, Alkaptonuria, Albinism, Tay Sach’s disease, Mucopolysaccharidoses, Hyperlipoproteinemia, Lesch - Nyhan syndrome, Orotic Aciduria, Pharmacogenetics- G6-PD deficiency; Ecogenetics- Alpha – 1 - antitrypsin.

Unit 4 Antioxidants and Free Radicals
Characteristics and generalization of free radicals and oxidants; Beneficial and deleterious activities of free radicals and oxidants; Enzymatic antioxidants – SOD, Catalase, Glutathione peroxidase, G-glutathione reductase; Non enzymatic antioxidants - Lipoic acid, Glutathione, Metabolic melatonin; Nutrient antioxidants - Vitamin C, Vitamin-E, Carotenoids, Flavonoids, Trace metals; Oxidative stress; Oxidative stress induced diseases.

Unit 5 Biochemical Disorders
Functions and classification of hormones; Regulation of glucose metabolism by hormones; Acid base balance; Hydrogen ion homeostasis and related disorders; Blood gas parameters and clinical applications; Fluid and electrolyte balance; Regulation of osmolality and maintenance of fluids in the various body compartments and related disorders.
Suggested Readings
 8th edition ,Palgrave Macmillan
SEMMESTER-VII
COURSE 19 B: BIOCHEMICAL GENETICS

Practical Credits: 1 2 hrs/week

Learning Outcomes:
Students after successful completion of the practical course will be able to:
LO1: Determine the blood group of individuals
LO2: Screen for sickle cell anemia and thalassemia
LO3: Determine serum levels of clinically important enzymes
LO4: Determine protein concentration
LO5: Estimate electrolytes in human serum

1. Determination of blood groups and Rh typing
2. Sickling test (slide method)
3. Screening test for beta thalassemia (NESTROFT method)
4. Quantitative determination of liver enzymes AST and ALT from serum by autoanalyzer
5. Determination of amylase and lipase
6. Quantitative determination of protein by spectrophotometry
8. Electrophoresis of hemoglobin by cellulose acetate membrane

Suggested Readings
2. Ruth Bjorklund, (1997), Sickle Cell Anemia
 Harper and Row,Hagerstown
4. Steven L. Jones, (2001), Clinical Laboratory Pearls
5. Hafiz Ahmed, (2017), Principles and Reactions of Protein Extraction Purification
7. Trinder P.,(1951), Analyst, 76:596-599
8. The Amylase Research Society of Japan, (1988), Handbook of Amylase and Related Enzymes

Co-curricular activities:

A. Mandatory (Training of students by Teacher on field related skills :)
1. For Teacher:
 1. Training of students by Teacher, in the laboratory to determine blood groups
 2. Special focus on important metabolic enzymes included in the syllabus
2. For Student
 1. Determining blood groups of the family members and other friends
 2. Case study of patients with sickle cell anemia and thalassemia

B. Suggested co-curricular activities
 1. Seminars, Group discussions, Debates
 2. Assignments on biochemical disorders
 3. Invited lectures on related topics by experts in the specified area
 4. Conduct awareness programs on screening for inborn errors of metabolism
Learning Outcomes:
Students after successful completion of the course will be able to
LO1: Gain knowledge about hematopoiesis and management of inherited bleeding disorders
LO2: Compare components of complete blood count in normal and abnormal conditions
LO3: Know about disorders of erythrocytes and lymphocytes
LO4: Understand the process of platelet formation and platelet disorders
LO5: Have an insight in to the equipment used and safe work practice in hematology lab

Unit 1 Introduction to Clinical Hematology
Basic morphology and basic concepts of hematopoiesis; Bone marrow structure and examination; Red blood cells
- Structure and function; Overview of normal hemostatic mechanism; Clinical evaluation and management of inherited bleeding disorders; Diagnosis of leukemias.

Unit 2 Complete Blood Count
Components of complete blood count – Red blood cells, White blood cells, Platelets; RBC - Red blood cell indices, Identify polychromatophilic cells; Pathophysiology and clinical conditions that may lead to target cells, Spherocytes, Ovalocytes and Elliptocytes, Sickle cells, and Fragmented cells; WBC – Leukopenia, Leukocytosis; Platelets – Thrombocytopenia, Thrombocytosis.

Unit 3 Disorders of Erythrocytes and White Blood Cells

Unit 4 Disorders of Thrombocytes
Overview of Megakaryopoiesis; Disseminated intravascular coagulation; Disorders of thrombocytes - Quantitative and qualitative platelet disorders, Immune thrombocytopenia (ITP) and thrombotic thrombocytopenic purpura (TTP), Von Willebrand's disease, Dysfibrinogenemia, Lupus anticoagulant Bernard Soulier disease, Glanzmann's thrombasthenia, Hermansky Pudlak syndrome, Jacobsen syndrome.

Unit 5 Laboratory Methods in Hematology
Principles of automated cell counter and interpretation of results; Hemoglobin electrophoresis; HPLC use in hematology; Special stains and cytochemistry; Flow cytometry; Principles of nuclear medicine and its applications; The safe work practices; Personal protective equipment and disposal of biologic hazards in the hematology lab.

Suggested Readings
SEMESTER-VII
COURSE 20 A: CLINICAL HEMATOLOGY

Practical Credits: 1 2 hrs/week

Learning Outcomes:
Students after successful completion of the practical course will be able to

LO1: Determine hemoglobin
LO2: Determine red cell indices
LO3: Perform complete blood count
LO4: Carry out sickling test
LO5: Confirm sickle cell anemia by electrophoresis

1. Determination of haemoglobin by Sahli’s method
2. Test for osmotic fragility of RBC
3. Determination of total RBC, WBC and total platelet count by hemocytometer
4. Determination of reticulocyte count.
5. Determination of differential leucocyte count
6. Determination of PCV and red cell indices by cell counter
7. Estimation of APTT, PT, INR (Coagulation test)
8. Sickling test
9. Electrophoresis of hemoglobin by cellulose acetate membrane

Suggested Readings
5. Gayatri Prakash, (2012), Lab Manual on Blood Analysis and Medical Diagnostics

2nd edition

Co-curricular activities:

A. Mandatory (Training of students by Teacher on field related skills:)

1. For Teacher:
1. Training of students by Teacher in laboratory on hematological investigations
2. Case studies on disorders of blood

2. For Student
 1. Charts preparation for different hematological disorders (on diagnosis, prevention, management)
 2. Collection of data about blood disorders

B. Suggested co-curricular activities
 1. Group discussion and power point presentations on anemias, leukemias, thrombocyte disorders etc.
 2. Visit to nearby diagnostic centres to have a demo of autoanalyzer
 3. Invited lectures on related topics by Doctors
SEMESTER-VII
COURSE 20 B: APPLICATIONS OF HUMAN GENETICS

Theory Credits: 3 3 hrs/week

Learning Outcomes:
Students after successful completion of the course will be able to

LO1: Understand the role of a genetic counselor.
LO2: Get an insight into gene therapy for different genetic diseases
LO3: Familiarize with the importance of DNA profiling and its ethical concerns
LO4: Understand the advantages of using molecular diagnosis of infectious diseases
LO5: Understand the different techniques used for the molecular diagnosis of genetic diseases

Unit 1 Genetic Counseling
History and development of genetic counseling; Role of Clinicians, Genetic counselors and Psychiatrists in genetic counseling; Process of genetic counseling - Constructing a family tree, Diagnostic information, Estimation of risks; Genetic counseling for Mendelian and non Mendelian disorders; Counseling techniques; Prenatal, pediatric and adult genetic counseling strategies; Genetic counseling - Psychosocial aspects, Legal issues, Ethical issues, Contemporary issues.

Unit 2 Gene Therapy
Gene therapy – Principle, Risks and challenges, Applications; Vectors used in gene therapy; Gene transfer types; Types of gene therapy; Methods of gene therapy- Ex vivo, In vivo, In situ gene therapy; Gene therapy for familial hypercholesterolemia, Cystic fibrosis, Duchenne muscular dystrophy, Bleeding disorders, Severe combined immunodeficiency syndrome.

Unit 3 Forensic Sciences
DNA profiling; Applications in forensics – Personal identification, Disputed paternity cases, Child swapping; Legal standards for admissibility of DNA profiling; Procedural and ethical concerns: Status of development of DNA profiling in India and abroad; Limitations of DNA profiling; New and future technologies- DNA chips, SNPs.

Unit 4 Molecular Diagnosis of Infectious Diseases
Introduction to molecular diagnostics; Advantages and disadvantages of molecular diagnostics; Molecular diagnosis of infectious diseases- Dengue, Malaria, Gonorrhoea, Nisseria, AIDS, Tuberculosis, Hepatitis, COVID-19.

Unit 5 Molecular Diagnosis of Genetic Diseases
Sickle cell anemia; Thalassemias; Cystic Fibrosis; Fragile-X syndrome; Alzheimer’s disease Duchenne Muscular Dystrophy; Huntington’s disease; Spinocerebellar ataxias; Neurofibromatosis; Genetic susceptibility test for multifactorial disorders - Neural Tube Defect, Cleft Lip and Palate, Cardio Vascular Disorder, Male infertility.
Suggested Readings:
SEMESTER-VII
COURSE 20 B: APPLICATIONS OF HUMAN GENETICS

Practical Credits: 1 2 hrs/week

Learning Outcomes:
Students after successful completion of the practical course will be able to

LO1: Collect family history from the proband
LO2: Diagnose infectious disease like tuberculosis
LO3: Diagnose SARS-CoV-2
LO4: Detect sickle cell anemia using molecular method
LO5: Diagnose duchenne muscular dystrophy

1. Documentation of clinical history of a patient
2. Diagnosis of Mycobacterium tuberculosis by ELISA
3. Quantitative diagnosis of SARS-COV-2 by RT-PCR.
4. SNP genotyping by PCR amplification
5. Diagnosis of sickle cell anemia by PCR-RFLP
6. Diagnosis of duchenne muscular dystrophy using multiplex-PCR
7. Diagnosis of β-Thalasemia by ARMS PCR

Suggested Readings
7. Phill Jones, (2008), Sickle Cell Disease
8. Kary B. Mullis er al, (2012), The Polymerase Chain Reaction
9. Rowa Yousef Alhabbab, (2018), Basic Serological Testing

Co-curricular activities:

A. Mandatory (Training of students by Teacher on field related skills:

1. For Teacher
 1. Training of students by Teacher, by conducting mock genetic counseling
 2. Train the students to solve disputed paternity cases from the given DNA finger prints
2. For Student
 1. Construction of pedigrees for patients with genetic diseases
 2. Preparation of charts regarding the different types of techniques used for molecular diagnosis

B. Suggested co-curricular activities
 1. Discussion regarding the scientific principles and techniques behind the work of forensic scientists and illustration with case studies
 2. Collection of available information on gene therapy for various genetic diseases
 3. Visit to forensic lab
 4. Invited lectures on Forensics by experts in the specified area
Learning Outcomes:
Students after successful completion of the course will be able to

LO1: Acquire knowledge about cancer and the genes responsible for cancer
LO2: Understand the different kinds of carcinogens
LO3: Learn about chromosomal abnormalities associated with different cancers
LO4: Apprehend different types of cancers
LO5: Understand prevention, diagnosis, and treatment of cancer

Unit 1 Genetics of Cancer
Introduction to cancer; Cell cycle regulation; Characteristics of cancer cells; Types of genes - Proto oncogenes, Oncogenes, Tumor Suppressor genes; Cancer as a genetic disorder; Inherited versus sporadic cancers; The role of epigenetics in cancer; Knudson’s hypothesis.

Unit 2 Cancer and Environment and Apoptosis
Cancer and environment - Physical, chemical and biological carcinogens; Apoptosis-Introduction, Caspases, Proand antiapoptotic genes, Fas mediated apoptosis; Mitochondria dependent pathways; Inhibitory pathways ofapoptosis; Regulation, Implication in diseases; Autophagy, Senescence.

Unit 3 Types of Cancers
Chromosomes in neoplasia; Chromosomal abnormalities associated with the specific malignancies - Acute Promyelocytic leukaemia (APL), Chronic myeloid leukaemia (CML) and Acute lymphoblastic leukaemia (ALL); Types of cancers – Retinoblastoma, Skin cancer, Lung cancer, Esophageal cancer, Colorectal cancer, Brain cancer, Breast cancer, Cervical cancer, Prostate cancer.

Unit 4 Cancer Stem cells
Cancer stem cells - Introduction to stem cells, Metastasis, Angiogenesis; Stochastic vs cancer stem cell model for cancer formation; Cancer stem cells in cancer initiation and progression; Cancer stem cell pathways; Regulation by microRNAs.

Unit 5 Cancer Prevention, Diagnosis, Treatment
Cancer prevention; Diagnosis; Cancer therapies and Recent advances in cancer research - Traditional chemotherapy, radiotherapy, Onco-surgery, Bone marrow transplantation, Immunotherapy, Combinational therapies, Natural products as therapeutics, Cancer vaccines, Gene therapies and delivery vehicles, Targetedanticancer therapies, Monoclonal antibody and Aadjuvant therapies.
Suggested Readings
Learning Outcomes:
Students after successful completion of the practical course will be able to

LO1: Detect chromosomal changes in cervical cancer
LO2: Identify the severity of the disease using micronuclei as biomarker
LO3: Detect chromosomal abnormalities associated with blood cancers
LO4: Learn the technique for isolation of DNA from tissue
LO5: Test cell proliferative activity

1. DNA ploidy assessment in cervical cancer
2. Micronucleus assay in different types of cancers
3. Detection of chromosome anomalies in blood cancers
4. Experiments related to cell structure and function (Apoptosis, Signaling, Cancer, etc.)
5. Isolation of DNA from tissue
6. Cell proliferation assay (MTT)

Suggested Readings
2. Sue Clark, (2009), A Guide to Cancer Genetics in Clinical Practice
7. Dr. Riddhi Shukla, (2021), Manual of Practical Pharmacology
SEMESTER-VIII
COURSE 21 B: EVOLUTIONARY AND QUANTITATIVE GENETICS

Learning Outcomes:
Students after successful completion of the course will be able to

LO1: Acquire knowledge regarding the different evolutionary theories
LO2: Understand the origin of prokaryotes and eukaryotes
LO3: Familiarize with the concept of speciation and molecular evolution
LO4: Understand the concept of heritability
LO5: Distinguish the different types of genetic variations

Unit 1 Theories of Evolution
Evolutionary theories – Lamarckism, Darwin’s theory of evolution; Limitations of Lamarckism and Darwin’s theory; Natural selection- Fitness, Natural selection at the level of genes; Factors affecting gene frequencies- Natural selection, Genetic drift, Mutation.

Unit 2 Origin of Life
Origin of biomolecules- Spontaneous generation, Louis Pasteur’s experiment, Oparin and Haldane’s theory of origin of life, Miller-Urey Experiment; Origin of prokaryotes and eukaryotes; Evolutionary time scale- Eras, Periods and epoch; Major events in evolutionary time scale.

Unit 3 Speciation and Molecular Evolution
Speciation- Causes of reproductive isolation, Evidence for speciation. Mode of speciation- Allopatric, Parapatric, Sympatric; Co-speciation- Sexual selection, Co-evolution and convergent evolution; Molecular evolution- Concept of neutral theory of molecular evolution, Molecular divergence and molecular clocks; Molecular tools in phylogeny; Classification and Identification; Origin of new genes and proteins.

Unit 4 Quantitative Genetics
Quantitative Genetics: Quantitative traits and their characteristics, Threshold traits, Multiple factor hypothesis, Types of quantitative traits, Determining gene number for a polygenic trait, Components of phenotypic variation and genetic models for quantitative traits; heredity- Concept, Broad sense heritability, Narrow sense heritability; Predicting phenotypes; Artificial selection.

Unit 5 Quantitative Genetic Analysis
Genetic variation and complex trait inheritance; Concepts of tag markers and haplotypes; Linkage disequilibrium. Quantitative genetic analysis- QTL and eQT; Study of genetic variation and complex trait inheritance using next-generation sequencing; DNA micro -array.
Suggested Readings

SEMESTER-VIII
COURSE 21 B: EVOLUTIONARY AND QUANTITATIVE GENETICS

Practical Credits: 1 2 hrs/week

Learning Outcomes:
Students after successful completion of the practical course will be able to

LO1: Understand the inheritance of human skin color
LO2: Solve the problems on heritability
LO3: Understand how selection can affect a population
LO4: Construct phylogenetic trees
LO5: Familiarize with software for conducting the statistical analysis of molecular evolution

1. Study of quantitative inheritance of skin color in man (Chart)
2. Genetic problems on polygenic variance, heritability.
5. Exploring “Simple Phylogeny” tool to construct phylogenic tree in EMBL-EBI portal.
6. A brief overview on “MEGA (Molecular Evolutionary Genetics Analysis)” software.

Suggested readings:
4. Griffiths AJF, Gelbart WM, Miller JH et al., (1999), Modern Genetic Analysis, - Freeman
5. Sudhir Kumar, Masatoshi Nei, Joel Dudley, Koichiro Tamura, Volume 9, Issue 4, July 2008 MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences, Briefings in Bioinformatics, , Pages 299–306
Learning Outcomes:
Students after successful completion of the course will be able to

LO1: Understand the digestion of macromolecules and regulation of glucose in body
LO2: Understand the Biosynthesis and oxidation of fatty acids
LO3: Apprehend the biosynthesis of nucleotides and their degradation
LO4: Understand the role of transaminase enzymes in the overall degradation of amino acids
LO5: Understand the mechanism of electron transport chain and its inhibitors

Unit 1 Carbohydrate Metabolism
Carbohydrate metabolism - Sequence and regulation of glycolysis, Citric acid cycle, Pentose-phosphate pathway, Entner-Doudoroff pathway; Glycogenesis; Glycogenolysis; Gluconeogenesis; Significance of Cori and glyoxylate cycle.

Unit 2 Lipid Metabolism
Lipid metabolism - Biosynthesis and oxidation of fatty acids; Utilization and synthesis of Ketone bodies and cholesterol; Metabolism of triglycerides, Phospholipids and sphingolipids; Role of liver and adipose tissue in lipid metabolism.

Unit 3 Amino acid Metabolism
Amino acid Metabolism- An overview of source and utilization of amino acids in human body; Transamination and oxidative deamination; Urea cycle (complete reactions, regulation of the urea cycle); Amino acids as biosynthetic precursors (heme biosynthesis and degradation, Biosynthesis of epinephrine, Dopamine, Serotonin, GABA, Histamine, Glutathione).

Unit 4 Nucleic acids Metabolism
Nucleotide biosynthesis - De novo and salvage pathways for biosynthesis of purine and pyrimidine; Mechanism of feedback regulation; Biosynthesis of Ribonucleotides; Deoxyribonucleotides; Inhibitors of nucleic acid biosynthesis; Nucleotide degradation.

Unit 5 Bioenergetics
Bioenergetics - Overview of thermodynamics, Relationship between G and Keq; High energy compounds, Standard free energy of hydrolysis of ATP, Structural basis of the group transfer potential of ATP; Oxidation reduction potential; Different types of oxidation reduction reactions; Ultrastructure of mitochondria, Anatomy, Enzymes; Electron transport chain; Inhibitors of electron transport chain; Electrochemical proton gradient; Mitochondrial electron transporters and shuttle systems.
Suggested Readings
7. Greenberg, (1954), *Chemical Pathways of Metabolism*
8. E.A. Munn, (2014), *The Structure of Mitochondria*
Learning Outcomes:
Students after successful completion of the practical course will be able to

LO1: Develop capability to quantify proteins and carbohydrates
LO2: Develop capability to quantify sugars and nucleic acids
LO3: Estimate cholesterol
LO4: Measure the enzymatic activity of amylase
LO5: Measure the enzymatic activity of trypsin

1. Estimation of proteins by Lowry method
2. Estimation of carbohydrates by Anthrone method
3. Estimation of reducing sugars by Benedict’s titrimetric method
4. Estimation of cholesterol
5. Estimation of DNA by diphenyl amine method
6. Estimation of RNA by Orcinol method

Suggested Readings
1. B. Sashidhar Rao, Vijay Deshpande, (2005), Experimental Biochemistry
Learning Outcomes:
Students after successful completion of the course will be able to

LO1: Learn about male and female reproductive systems
LO2: Understand the difference between spermatogenesis and oogenesis
LO3: Gain knowledge about different reproductive disorders
LO4: Understand the genetic basis of infertility
LO5: Gain knowledge about reproductive technologies

Unit 1 Male Reproductive System
Male reproductive system; Spermatogenesis - Process and hormonal control; Maturation of sperm; Semen - Constituents of semen, Coagulation of semen, Physiological significance of seminal plasma; Male hormones – Characteristics, Receptors, Target cells; Mechanism of hormone action; Sexual differentiation and behavior.

Unit 2 Female Reproductive System
Female reproductive system; Oogenesis - Process and hormonal control; Reproductive cycles - Estrous cycle and menstrual cycle; Parturition - Onset of parturition, The stage of labour, Ferguson’s reflex, Hormonal control of parturition; Process of lactation.

Unit 3 Reproductive Disorders
Endometriosis; Uterine fibroids; Gynecologic cancer; Interstitial cystitis; Polycystic ovary syndrome; Hyperprolactinemia; Pre-eclampsia; Intrauterine growth restriction; Hermaphroditism; Gonadal dysgenesis; Anomalies of genital ducts; Sexually transmitted diseases - Human papilloma virus infection, Syphilis, Gonorrhea, HIV/AIDS

Unit 4 Infertility
Risk factors; Diagnosis; Genetic basis of male infertility; Genetic basis of female infertility; Recurrent pregnancy loss; Spontaneous abortions and still birth - Etiology, Pathogenesis, Genetic characteristics, Clinical notes, Diagnosis and management; Precocious; Sexual dysfunction; Cryptorchidism.

Unit 5 Reproductive Technologies
Assisted reproductive techniques; In vitro fertilization- Artificial insemination, Semen analysis, Ovulation induction, Oocyte retrieval, In vitro maturation, Intra-cytoplasmic sperm injection, Gamete intrafallopian transfer, Cryopreservation of gametes and embryos; Vitrification; Embryo biopsy; Embryo hatching; Embryo transfer; Pre-implantation genetic diagnosis.
Suggested Readings
Learning Outcomes:
Students after successful completion of the practical course will be able to

LO1: Carry out IVF in mice
LO2: Perform intra-cytoplasmic sperm injection
LO3: Isolate pre-implantation embryo
LO4: Cryopreserve sperm, oocyte and zygote
LO5: Carry out semen analysis

In Vitro Fertilization (Mouse model)
1. Semen analysis – Manual and CASA
2. Super-ovulation
3. Isolation of oocytes and sperm from mice
4. Culture of zygote to blastocyst stage
5. Mating and checking copulation plug
6. Collection and isolation of pre-implantation embryo
7. Intra-Cytoplasmic Sperm Injection (ICSI)
8. Sperm / oocyte / embryo cryopreservation

Suggested Readings
Learning Outcomes:
Students after successful completion of the course will be able to

LO1: Understand Hardy-Weinberg principle and its importance in population genetics
LO2: Understand the influence of mutation and selection on Hardy-Weinberg Equilibrium
LO3: Gain knowledge regarding the effect of migration on gene frequencies
LO4: Apprehend consanguinity and its consequences
LO5: Familiarize with origin of human races

Unit 1 Mendelian Population and Hardy-Weinberg Equilibrium
History of human population genetics; Genetic constitution of a population; The Hardy-Weinberg Equilibrium (HWE) - Principle, Dynamics, Application; HWE and linkage disequilibrium; HWE extension to multiple alleles, Sex-linked alleles; Exceptions to HWE.

Unit 2 Factors affecting Hardy-Weinberg Equilibrium
Factors affecting HWE; Impact of recurrent and non-recurrent mutations in a HWE population; Mutation pressure and estimation of mutation rates; Selection coefficient and fitness; Selection against recessive, dominant, partial-dominant and over-dominant genes; Heterozygote advantage; Populations in genetic equilibrium – Balancing selection, Mutation – selection balance, Mutation-Drift balance.

Unit 3 Effect of Migration on Hardy-Weinberg Equilibrium
Genetic polymorphism, Types of genetic polymorphisms; Effect of migration and genetic drift on gene frequencies; Human migration and diseases – Founder effect, Bottleneck effect, Genetic effect.

Unit 4 Genetic Demography
Genetic demography- Effective size of the population, Index of opportunity for natural selection, Mating patterns, Consanguinity, Inbreeding coefficient, Genetic load; Wahlund effect, Biological consequences of inbreeding.

Unit 5 Origin of Human Races
Applications of population genetics; Genetic mechanisms of evolution of the human species; Races - Origin, Genetic differences between races, Future of human races

Suggested Readings
SEMESTER-VIII

COURSE 23 A: POPULATION GENETICS

Learning Outcomes:
Students after successful completion of the practical course will be able to

LO1: Calculate allele frequencies at a particular locus in a population
LO2: Estimate the proportion of heterozygotes in a population
LO3: Estimate the rate of mutation in a population
LO4: Calculate fitness value of the affected individuals in a population
LO5: Calculate population inbreeding coefficient

1. Calculation of allele frequencies
2. Estimation of heterozygotes in a population
3. Estimation of mutational rates in a population
4. Calculation of fitness value of the affected individuals
5. Estimation of inbreeding coefficient

Suggested readings
5. Takeo Maruyama,(1977), Stochastic Problems in Population Genetics, Lecture Notes in Biomathematics
SEMESTER-VIII
COURSE 23 B: RECENT ADVANCES IN HUMAN GENETICS

Learning Outcomes;
Students after successful completion of the course will be able to

LO1: Familiarize with various genome editing tools.
LO2: A theoretical knowledge about gene therapy done for various diseases
LO3: To know the applications of RNAi technology.
LO4: Understand the importance of biomarkers in personalized medicine.
LO5: Get insight in to the various epigenetic mechanisms which regulate gene expression

Unit 1 Genome Editing Tools
CRISPR locus in bacteria, Brief history, Mechanism of CRISPR pathway, CRISPR-Cas9 system for genome engineering in mammals, Plants and other organisms; Zinc finger nuclease-based engineering; Transcription activator-like effector-based nucleases (TALEN) in genome engineering; Synthetic RNA biology and engineering biological systems.

Unit 2 Gene Therapy
Genetic approaches in treating human diseases, Principles and applications of gene therapy, Gene transfer methods, Gene therapy for cystic fibrosis, Duchene muscular dystrophy, Bleeding disorders and severe combined immunodeficiency syndrome.

Unit 3 RNAi Technology
Discovery of RNA interference; Categories of small non-coding RNAs; Different components of gene silencing; Mechanism of RNA interference; RNAi and therapeutics in cancer; Infectious diseases; Cardiovascular and cerebrovascular diseases; Neurodegenerative disorder; Future of RNAi in biology and medicine.

Unit 4: Personalized medicine
Scope of personalized medicine; Pharmacogenomics/drug metabolism in relation to individual genetic makeup; Biomarkers; Molecular testing in personalized medicine- Hereditary diabetes, Neurological disorders; Uses of biomarkers in cancer research and cancer care; Surveillance of adverse drug reactions.

Unit 5 Epigenetics
Epigenetics; Epigenetic modifications - Altered DNA methylation, Histone modification, Non-coding RNA and chromatin remodeling; Epigenetic analysis techniques- Methylation analysis, DNA-protein interaction analysis, Chromatin accessibility analysis; Epigenetic influences and diseases- Cancer, Adiposity, Alzheimer’s disease, Mental retardation; Epigenetic therapies; Epigenetics in drug discovery
Suggested Readings

Learning Outcomes:
Students after successful completion of the practical course will be able to

LO1: Familiarize with the construction of various genome editing tools.
LO2: Have theoretical knowledge about gene therapy done for various diseases
LO3: Know the applications of RNAi technology.
LO4: Test for methylation in a particular gene
LO5: Understand the importance of panel tests in family members with positive family history of ovarian and breast cancers

1. Genome editing tools
 Development of CRISPR/Cas9 Design and construction of ZFN
 Design and construction of TALEN
2. Case studies of gene therapy
 Cystic fibrosis
 Duchenne muscular dystrophy
 Bleeding disorders
3. Case studies of RNAi experiments
4. Methylation - specific PCR
5. Panel testing for hereditary breast and ovarian cancer predisposition

Suggested readings
8. Ute Schepers(Ed.), (2005), RNA Interference in Practice ,Wiley-VCH GmbH & Co. KGaA
SEMESTER-VIII
COURSE 24 A: FUNDAMENTALS OF PHYSIOLOGY

Theory Credits: 3 3 hrs/week

Learning Outcomes:
Students after successful completion of the course will be able to

LO1: Know the physiological aspects of musculoskeletal and cardiovascular system of human body
LO2: Understand the basic concepts of physiology of respiratory system
LO3: Get knowledge about the physiology of gastrointestinal system and its disorders
LO4: Get knowledge about the physiology of excretory system
LO5: Understand nervous system and the concepts of human endocrinology

Unit 1 Physiology of Musculoskeletal and Cardiovascular System
Role of bone in calcium homeostasis; Physiology of muscle contraction; Hematopoiesis; Hemostasis and thrombosis; Hemorheology; Functions of lymph and lymph nodes; Physiology of heart and conduction system; Normal ECG; Cardiac cycle; Heart sounds; Cardiac output and blood pressure; Coronary circulation.

Unit 2 Physiology of the Respiratory System
Physiology of the respiratory system - Mechanism of breathing, Dead space, Surfactant, Dynamic and static lung volumes and capacities; Transport of oxygen and carbon dioxide; Regulation of respiration; Cyanosis; Hypoxia; Artificial respiration.

Unit 3 Physiology of Gastrointestinal System
Regulation and mechanism of gastric and pancreatic secretion; Gastro-intestinal motility - stages of deglutition, Mechanism, Disturbances, Types of movement, Gastric emptying regulation; Gastro-intestinal hormones and their actions; Digestion and absorption of carbohydrates, Proteins, Vitamins, Water and electrolytes; Cholesterol homeostasis; Immune function of GI tract.

Unit 4 Physiology of Excretory system
Physiology of excretion and urine formation - Glomerular filtration, Tubular reabsorption and tubular secretion, Regulation of body fluid by kidneys, Formation of dilute and concentrated urine; Neural control of renal functions
- Distribution and functions of renal nerves, Autoregulation, Micturition and reflexes, Atonic bladder and incontinence.

Unit 5 Physiology of Sensory and Motor Nervous System
Action potential; Transmission at synapse; Sensory, motor and integrative functions of brain and limbic system; Types of reflex actions; Physiological function of eye, Ear, Nose, Skin and tongue; Functions of endocrine glands, Mechanisms of hormone action, Control of hormones secretion.
Suggested Readings
2. Publications, New York
Learning Outcomes:
Students after successful completion of the practical course will be able to
LO1: Able to use different instruments for measuring different parameters
LO2: Measure different physiological responses like heart rate, respiratory rate etc.
LO3: Carry out blood and urine analysis
LO4: Test vision, hearing, smell and taste
LO5: Assess the relationships between multiple environmental factors and human perceptions

1. Principles of instrumentation for measurement of different parameters.
2. Measurement of heart rate, pulse rate, respiratory rate
3. Measurement of temperature, blood pressure
4. Renal function test using autoanalyzer (Uric acid, Creatinine, Urea)
5. Complete urine examination by strip method (pH, Specific gravity, Ketone bodies, Blood, Protein, Glucose)
6. Experiments with vision and hearing, olfaction and taste.
7. Methods of measurements of illumination and noise levels, audiometry, olfactometer, taste acuity.

Suggested Readings
1. Best and Tailor Williams & Wilkins Co, (2011), Physiological Basis of Medical Practice 13th edition, Riverview, MI USA

Co-curricular activities:

A. Mandatory: (Training of students by Teacher on field related skills)
 1. For Teacher
 1. Training of students by Teacher, in laboratory to check the vital signs
 2. Creating awareness on renal and liver functioning tests

 2. For Student
 1. Preparation of videos on different physiological processes
 2. Charts preparation for synaptic transmission and mechanisms of hormone action
B. Suggested co-curricular activities

1. Visit to local diagnostic centres to familiarize with Treadmill test to know about cardiac function
2. Visit to vision and hearing centre for obtaining knowledge on the experiments to test vision and hearing (audiometry), olfaction (olfactometer) and taste
3. Invited lectures on related topics by subject experts
4. Visit to local diagnostic centres for demonstration on autoanalyzer
Learning Outcomes:
Students after successful completion of the course will be able to

LO1: Understand different types of chromatography techniques
LO2: Decide the type of electrophoresis to be used basing on the kind of biomolecule to be analysed
LO3: Understand the importance of colorimetry and spectrophotometry in determining the concentration of various biochemical compounds and biomolecules
LO4: Distinguish the different types of microscopic techniques
LO5: Familiarize with proper use of lab equipment

Unit 1 Centrifugation and Chromatographic Techniques
Centrifugation - Principle, Types of centrifuges, Different types of rotors and their applications, Ultracentrifugation; Chromatographic techniques - Principle, Procedure and applications of paper chromatography, Adsorption chromatography, Partition chromatography, Ion exchange chromatography, Gel filtration chromatography, Affinity chromatography, High performance liquid chromatography, Gas liquid chromatography.

Unit 2 Electrophoretic Techniques
Electrophoretic techniques - Agarose gel electrophoresis, Polyacrylamide gel electrophoresis (PAGE and SDS- PAGE), 2-Dimensional gel electrophoresis, Isoelectric focusing technique, Immuno-electrophoresis; Factors affecting electrophoresis; Errors in electrophoresis techniques; Determination of size and molecular weight.

Unit 3 Spectrophotometry
Design of colorimeter and spectrophotometer; Principle and applications of -UV spectroscopy; Atomic absorption spectrophotometry, Circular dichroism spectroscopy; X-ray diffraction and NMR in structure determination.

Unit 4 Microscopy
Light microscopy; Phase contrast microscopy; Fluorescent microscopy; Scanning electron microscopy (SEM/FESEM); Transmission electron microscopy (TEM); Scanning-probe microscopy; Atomic force microscopy; Confocal laser scanning microscopy (CLSM); Cytophotometry; Flow Cytometry.

Unit 5 Maintenance of Laboratory Instruments
Suggested Readings:
Learning Outcomes:
Students after successful completion of the practical course will be able to

LO1: Separate the amino acids from a mixture
LO2: Master the technique of thin layer chromatography
LO3: Carry out different types of electrophoretic techniques
LO4: Determine the concentration of various biochemical compounds and biomolecules
LO5: Distinguish the different parts of microscope.

1. Separation of amino acids by paper chromatography
2. Separation of sugars by thin layer chromatography
3. Separation of lipids by thin layer chromatography
4. Agarose gel electrophoresis of DNA
5. Polyacrylamide gel electrophoresis of proteins
6. Molecular weight determination of proteins -SDS-PAGE
7. Determination of concentration of given sample by spectrophotometer
8. Study the different parts and working of microscope
9. Determination of iso electric point of glycine

Suggested Readings
1. B.Sashidhar Rao, Vijay Deshpande, (2005), Experimental Biochemistry
2. Wilson and Walker ,(2018), Principles and Techniques of Practical Biochemistry, 8th edition,

Co-curricular activities :

A. Mandatory (Training of students by Teacher on field related skills :)
1. For Teacher :
 1. Training of students by Teacher regarding the proper handling of lab equipment
 2. Conduct awareness programs on screening for inborn errors of metabolism
2. For Student
 1. Preparation of charts on different microscopes
 2. Case study of patients with sickle cell anemia and thalassemia

B. Suggested co-curricular activities
 1. Organization of workshop on analytical techniques
 2. Group discussion/seminars on different chromatography techniques
 3. Invited lectures on related topics by experts in the specified area
Learning Outcomes:
Students after successful completion of the course will be able to

LO1: Acquire knowledge on the basic concepts of immune system
LO2: Get deep insight into the structure and diversity of immunoglobulin molecules and the genetic basis of antibody diversity
LO3: Apprehend the role of major histocompatibility complex in organ transplantation
LO4: Familiarize with different immune disorders and immunodiagnostic techniques
LO5: Gain knowledge about different types of vaccines

Unit 1 Types and Organs of Immune system
Types of immunity; Innate immune system – Phagocytes, Complement system, Natural killer cells; Adaptive immune system – Cellular immune system, Humoral immune system; Organization and structure of lymphoid organs – Bone marrow, Thymus, Spleen and lymph nodes; Cells of the immune system – B Lymphocytes, T-Lymphocytes; T-cell receptor – Structure and function.

Unit 2 Immunoglobulins
Nature and properties of antigens; Antigen – antibody interactions; Immunoglobulins – Structure, Antigenic determinants on immunoglobulins, Function, Types, Genetic basis of diversity; Major Histocompatibility Complex (MHC) - Structure and Functions of Class I and Class II MHC Molecules

Unit 3 Immune Disorders
Immuno regulation; Immunodeficiency diseases - Agammaglobulinemia, Ataxia telangiectasia and severe combined immunodeficiency disease (Primary), Multiple myeloma and leukemia (Secondary); Autoimmune Disorders – Rheumatoid Arthritis, Myasthenia gravis, Hashimoto’s thyroiditis, Graves disease; Immunity breakdown (AIDS); Immunotherapy (Monoclonal antibodies and cytokines)

Unit 4 Immunodiagnostic Techniques
Antigen - antibody interactions and techniques; Agglutination and haemagglutination assays; Radial immunodiffusion, Ouchterlony double diffusion; Immunoelectrophoresis and Immunoelectrophoretic procedures; Enzyme linked immunosorbent assay; Immunoblotting; Immunofluorescence; Immunoelectron microscopy.

Unit 5 Vaccines
Historical background of vaccination, Classification of vaccines, Vaccine preventable infectious diseases, Human vaccine manufacturers and licensed vaccines, Rationale vaccine design based on clinical requirements, Scope of future vaccine changes

Suggested Readings
Learning Outcomes:
Students after successful completion of the practical course will be able to

LO1: Carry out blood grouping
LO2: Conduct ELISA test which can be used to diagnose different diseases
LO3: Perform immunoelectrophoresis which is used for diagnostic purpose
LO4: Have hands on experience on serological diagnosis of HIV and Hepatitis
LO5: Carry out tests for detection, identification and quantification of antibodies and antigens

1. Blood grouping and Rh typing
2. Quantitative precipitin assay
3. Latex agglutination test
4. Immunofluorescence (ELISA)
5. Separation of proteins by immunoelectrophoresis
6. Radial Immunodiffusion (RID)
7. Ouchterlony double diffusion test
8. Immunodiagnostic - Detection of HIV antigen by Tri dot method
10. Antigen – Antibody Reaction test (WIDAL).

Suggested Readings
2. Bradshaw LJ, (1992), *Laboratory Immunology*
5. D.Brooks and E.M.Dunbar, (1986), *Infectious Disease*
8. Mitchell L.Shiffman, (2012), *Chronic Hepatitis C Virus*

Co-curricular activities:

A. Mandatory (Training of students by Teacher on field related skills :)
1. For Teacher :
 1. Training of students by Teacher in laboratory on different immunodiagnostic techniques
 2. Conduct awareness programs on vaccines
2. For Student

1. Preparation of charts on various autoimmune disorders
2. Seminar on organs of Immune system

B. Suggested co-curricular activities

1. Group discussion about the role of MHC and immunodeficiency diseases.
2. Assignments on Immune disorders
3. Invited lectures on related topics by experts in the specified area
4. Visit to local diagnostic centers for demonstration on Flourescence flow cytometry
Learning Outcomes:
Students after successful completion of the course will be able to

LO1: Gain knowledge on fundamentals and mechanism of genotoxicity
LO2: Gain knowledge about genotoxic agents and their metabolism
LO3: Have an idea about DNA damage and various repair mechanisms that occur in human body
LO4: Understand different toxicity testing methods
LO5: Apprehend the role of genotoxicity in cancer

Unit 1 Genetic Toxicity and its Mechanism
Origin of genetic toxicology; Historical prospective of genetic toxicology; Fundamentals of genetic toxicity; Mechanism of genotoxicity; Mechanism of induction of chromosomal alterations and sister chromatid exchanges; Chemical occupational hazards.

Unit 2 Classification of Genotoxic Agents and their Metabolism
Classification of genotoxic agents; Routes and sites of exposure; Absorption, Distribution and excretion oftoxicants; Xenobiotic metabolism; Consequences of genotoxic effects in humans. Endogenous metabolism.

Unit 3 DNA Damage and Repair
DNA damage- Exogenous factors and endogenous factors; DNA lesions and genomic instability; DNA repair - Direct repair, Excision repair, Mismatch repair, Post replication repair; Diseases caused due to defective repair of DNA damage

Unit 4 Toxicity Tests
Toxicity tests- In-vitro testing methods - Bacterial reverse mutation test, Mammalian chromosome aberration test; In-vivo genotoxicity testing methods - Comet assay, Ames test, Sister chromatid exchange, Micronucleus assay.

Unit 5 Genetic Toxicology and Cancer Genetics
Cell cycle regulation- Tumor suppressor genes, Oncogenes: Mechanism and activation, Proto oncogenes, DNA repair genes; Angiogenesis; Metastasis; Role of epigenetics in cancer; Epigenetic markers for early detection of cancer; Genetic toxicology and cancer risk assessment Epigenetic therapies

Suggested Readings
2. James M.parry and Elizabeth M.Parry, (2012), Genetic Toxicology: Principles and Methods
4. Saura C. Sahu, (2012), Toxicology and Epigenetics, wiley-Backwell
11. Laura Robinson, (2018), *A Practical guide to Toxicology and Human Health Risk Assessment*
SEMESTER-VIII
COURSE 25 B: GENETIC TOXICOLOGY

Practical Credits: 1 2 hrs/week

Learning Outcomes:
Students after successful completion of the practical course will be able to

LO1: Detect genotoxic agents
LO2: Detect the extent of DNA damage in cells
LO3: Identify agents that cause chromosome aberrations in mammalian cells
LO4: Assess genotoxicity of different physical and chemical factors
LO5: Find out epigenetic modifications in a gene

1. Short-term biochemical tests for genetic toxicity
2. Test for gene mutations in bacteria - Bacterial reverse mutation test
3. The in vivo comet assay test
4. The in vitro chromosome aberration test
5. Sister chromatid exchanges
6. Micronucleus assay
7. Methylation-specific PCR
8. Chromatin immunoprecipitation

Suggested Readings
2. QSAR TOOLBOX, (2013), User Manual Strategies for grouping chemicals to fill data gaps to assess genetic toxicity and genotoxic carcinogenicity

Co-curricular activities:

A. Mandatory (Training of students by Teacher on field related skills):
1. For Teacher:
 1. Training of students by Teacher on different toxicity testing methods
 2. Creating awareness programs on Occupation safety

2. For Student
 1. Prepare charts on different DNA repair mechanisms which occur in human body
 2. List out the different health hazards of chemicals
B. Suggested co-curricular activities
 1. Seminars on epigenetic mechanisms
 2. Group discussion/Quiz on related topics
 3. Invited