REVISED UG SYLLABUS UNDER CBCS
(Implemented from Academic year 2020-21)

PROGRAMME: FOUR YEAR BCA
Domain: Bachelor Computer Applications (BCA)
Skill Enhancement Courses (SECs) for Semester V, from 2022-23
Semester – V

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Paper Code</th>
<th>Subject</th>
<th>Hours per week</th>
<th>Credits</th>
<th>Max. Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Internal</td>
<td>External (University Exams)</td>
</tr>
<tr>
<td>1</td>
<td>SEC-1</td>
<td>Machine Learning Using Python</td>
<td>4</td>
<td>3</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>SEC-1P(Lab)</td>
<td>Python Lab</td>
<td>2</td>
<td>2</td>
<td>--</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>SEC-2</td>
<td>Digital Imaging</td>
<td>4</td>
<td>3</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>SEC-2P(Lab)</td>
<td>Digital Imaging Lab</td>
<td>2</td>
<td>2</td>
<td>--</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>SEC-3</td>
<td>Cyber Security and Malware Analysis</td>
<td>4</td>
<td>3</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>SEC-3P(Lab)</td>
<td>Cyber Security and Malware Analysis Lab</td>
<td>2</td>
<td>2</td>
<td>--</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>SEC-4</td>
<td>Internet of Things</td>
<td>4</td>
<td>3</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>SEC-4P(Lab)</td>
<td>Internet of Things Lab</td>
<td>2</td>
<td>2</td>
<td>--</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>SEC-5</td>
<td>Mobile Application Development</td>
<td>4</td>
<td>3</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>SEC-5P(Lab)</td>
<td>Mobile Application Development Lab</td>
<td>2</td>
<td>2</td>
<td>--</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>SEC-6</td>
<td>Computer Networking and PC trouble shooting</td>
<td>4</td>
<td>3</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>SEC-6P(Lab)</td>
<td>Computer Networking and PC trouble shooting Labs</td>
<td>2</td>
<td>2</td>
<td>--</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>36</td>
<td>30</td>
<td>150</td>
<td>750</td>
</tr>
</tbody>
</table>

Note-1: The Number of hours per week and credits are assigned to each course as per the course structure which was already approved at the time of finalizing the first FOUR semesters of BCA programme under CBCS by the concerned committee.

Note-2: One of the main objectives of Skill Enhancement Courses (SEC) is to inculcate practical skills related to the domain subject in students. The syllabus of SEC will be skill oriented and hence, teachers shall impart practical training to students on the skills embedded in syllabus citing related real field situations.

Note-3: Since, the proposed SECs are connected to Computer Programming/Software Tools and Skill enhancement, the students need to get exposure on the syllabus content by practicing on the computer. Faculty are advised to engage students in practical based assignments so as to ensure...
better understanding of the practical usage of the particular skill based subject in real
application domain.

Semester-wise Revised Syllabus under CBCS, 2020-21
Domain Subject: BACHELOR OF COMPUTER APPLICATIONS
Semester –V
MACHINE LEARNING USING PYTHON
(Skill Enhancement Course, 3 credits)
Total Hrs: 60 Max Marks: 100

Course Educational Objective: The objective of the course provides the basic concepts and
techniques of Machine Learning and helps to use recent machine learning software for solving
practical problems. It enables students to gain experience by doing independent study and research.

Course Outcomes: At the end of this course, the student will be able to

CO1: Identify the characteristics of machine learning.(Understand- L2)

CO2: Summarize the Model building and evaluation approaches(Understand- L2)

CO3: Apply Bayesian learning and regression algorithms for real-world Problems.(Apply-
L3)

CO4: Apply supervised learning algorithms to solve the real-world Problems. (Apply- L3)

CO5: Apply unsupervised learning algorithms for the real world data. (Apply- L3)

UNIT-I: Introduction to Machine Learning and Preparing to Model
Introduction to Machine Learning-Introduction, What is Human Learning? Types of Human
Learning, What is Machine Learning? Types of Machine Learning, Problems Not To Be Solved
Using Machine Learning, Applications of Machine Learning.
Preparing to Model-Introduction, Machine Learning Activities, Basic Types of Data in
Machine Learning, Exploring Structure of Data, Data Quality and Remediation, Data Pre-
Processing

UNIT-2: Modeling & Evaluation, Basics of Feature Engineering
Modeling & Evaluation-Introduction, Selecting a Model, Training a Model (for Supervised
Learning), Model Representation and Interpretability, Evaluating Performance of a Model.
Basics of Feature Engineering-Introduction, Feature Transformation, Feature Subset Selection

UNIT-3: Bayesian Concept Learning and Regression
Bayesian Concept Learning - Introduction, Why Bayesian Methods are Important?, Bayes’
Theorem, Bayes’ Theorem and Concept Learning, Bayesian Belief Network.
Regression: Introduction, Regression Algorithms - Simple linear regression, Multiple linear
regression, Polynomial Regression Model, Logistic Regression, Maximum Likelihood
Estimation.
UNIT-4: Supervised Learning: Classification, Ensemble Learning
Classification-Introduction, Example of Supervised Learning, Classification Model, Classification Learning Steps, Common Classification Algorithms - k-Nearest Neighbour (kNN), Decision tree, Random forest model, Support vector machines.
Ensemble Learning- Boosting, Bagging

UNIT-5: Unsupervised learning
Unsupervised Learning- Introduction, Unsupervised vs Supervised Learning, Application of Unsupervised Learning, Clustering -Clustering as a Machine Learning task, Different types of clustering techniques, Partitioning methods, Hierarchical clustering, Density-based methods: DBSCAN.
Finding Pattern using Association Rule - Definition of common terms, Association rule, Apriori algorithm.

Text Books:

Reference Books:

MACHINE LEARNING USING PYTHON LAB
1. EDA Analysis
2. Exploring Feature Selection Algorithms
 - Ranking
 - Wrapper methods
3. Dimensionality Reduction-PCA
5. Probabilistic Classification Algorithm
6. Regression Techniques: Linear, Logistic
7. Classification Techniques – Tree Based
8. Classification Techniques- Neural Network.
9. Ensemble Learning

Course Objective:

Learn about different types of images and how to use basic and advanced features of GIMP Software for creating and image editing tools.

Course Learning Outcomes:

Upon successful completion of the course, a student will be able to:
1. Gain knowledge about Types of Graphics, Types of Objects, Types of video editing tools
2. Show their skills in editing and altering photographs for through a basic understanding of the tool box.
3. Gain knowledge in using the layers.
4. Gain knowledge in using the selection tools, repair tools.
5. Gain knowledge in using selection tools , applying filters and can show their skills.

UNIT-I 12 HRS

1. Types of Graphics
 1.1 Raster vs Vector Graphics
2. Types of Objects
 2.1 Audio formats
 2.2 Video formats
 2.3 Image formats
 2.4 Text document formats
3. Types of video editing
4. Different color modes.
5. Image Scanner
 5.1 Types of Image Scanners

UNIT-II 12 HRS

1. What is GIMP
2. GIMP tool box window
3. layers Dialog
4. Tool Options Dialog
5. Image window
6. Image window menus

UNIT-III 12 HRS

Improving Digital Photos
1.1 Opening files
 1.1.1 rescaling saving files
1.2. Cropping
1.3. Brightening & Darkening
1.4. Rotating
1.5. Sharpening
1.6. Fixing Red Eye

Introduction to layers

2. What is layer
 2.1. Using layer to add text
 2.2. Using move tool
 2.3. Changing colors
 2.4. Simple effects on layers
 2.5. Linking layers together
 2.6. Performing operations on layers
 2.7. Using layers to copy and paste
 2.8. Tour of layers dialog

UNIT-IV

Drawing:

1.1. Drawing lines and curves
1.2. Changing colors and brushes
1.3. Erasing
1.4. Drawing rectangles
1.5. Circles, other shapes
1.6. Outlining and filling regions
1.7. Filling with patterns and gradients
1.8. Importing brushes or gradients or making your own.

Selection:

2.1. Working with selections
2.2. Select by color and fuzzy
2.3. Select Bezier paths
2.4. Intelligent scissors tool
2.5. Modifying selections with selection modes

UNIT-V

Erasing and Touching Up:

1.1. Dodge and burn tool
1.2. Smudging tool
1.3. Clone tool
1.4. Sharpening using convolve tool
1.5. Blurring with Gaussian Blur
1.6. Correcting Color Balance
1.7. Hue
1.8. Saturation
1.9. Color balance using curves and levels.
Filters:

2.1 Filters
 2.1.1 Blur
 2.1.2 Enhance
 2.1.3 Distort
 2.1.4 Noise Filters

Recommended Co-Curricular Activities (participation: total 15 weeks):

(Co-curricular activities shall not promote copying from textbook or from others work and shall encourage self/independent and group learning)

A. Measurable
 1. Assignments (in writing and doing forms on the aspects of syllabus content and outside the syllabus content. Shall be individual and challenging)
 2. Student seminars (on topics of the syllabus and related aspects (individual activity))
 3. Quiz (on topics where the content can be compiled by smaller aspects and data (Individuals or groups as teams))
 4. Study projects (by very small groups of students on selected local real-time problems pertaining to syllabus or related areas. The individual participation and contribution of students shall be ensured (team activity))

B. General

 1. Group Discussion
 2. Others

RECOMMENDED CONTINUOUS ASSESSMENT METHODS:

Some of the following suggested assessment methodologies could be adopted;
1. The oral and written examinations (Scheduled and surprise tests),
2. Closed-book and open-book tests,
3. Programming exercises,
4. Observation of practical skills,
5. Efficient delivery using seminar presentations,
6. Viva voce interviews.
7. Computerized adaptive testing, literature surveys and evaluations,
8. Peers and self-assessment, outputs form individual and collaborative work
DIGITAL IMAGING LAB
(Number of Hours per week: 2, Credits: 2)

1. Designing a Visiting card
2. Design Cover page of a book
3. Paper add for calling tenders
4. Passport photo design
5. Design a Pamphlet
6. Brochure designing
7. Titles designing
8. Custom shapes creation
9. Black & white and color photo conversion
10. Image size modification
11. Background changes
12. Texture and patterns designing
13. Filter effects & Eraser effects

Semester-wise Revised Syllabus under CBCS, 2020-21
Domain Subject: BACHELOR OF COMPUTER APPLICATIONS
Semester –V
Course: CYBER SECURITY AND MALWARE ANALYSIS
(Skill Enhancement Course, 3 credits)

COURSE OBJECTIVES:

The main objective of the course is to impart conceptual understanding on Cyber security and protection of electronic systems and information from malware attacks.

COURSE OUTCOMES:

Upon successful completion of this course, students should have the knowledge and skills to

1. Understand the computer networks, networking tools and cyber security
2. Learn about NIST Cyber Security Framework
3. Understand the OWASP Vulnerabilities
4. Implement various Malware analysis tools
5. Understand about Information Technology act 2000

UNIT-I: Introduction to Networks & cyber security

- Computer Network Basics
- Computer network types
- OSI Reference model

periods: 14
• TCP/IP Protocol suite
• Difference between OSI and TCP/IP
• What is cyber, cyber-crime and cyber-security
• All Layer wise attacks
• Networking devices: router, bridge, switch, server, firewall
• How to configure: router
• How to create LAN
• Network tools
 ❖ IP scanner
 ❖ port scanner
 ❖ vulnerability scanner
 ❖ command tools-- netstack, traceroute, nslookup
 ❖ tcpview

UNIT-II: NIST Cyber security framework periods: 10
• Introduction to the components of the framework
• Cybersecurity Framework Tiers
• What is NIST Cyber security framework
• Features of NIST Cyber security framework
• Functions of NIST Cyber security framework
• Turn the NIST Cybersecurity Framework into Reality/ implementing the framework

UNIT-III: OWASP periods: 14
• What is OWASP?
• OWASP Top 10 Vulnerabilities
 ❖ Injection
 ❖ Broken Authentication
 ❖ Sensitive Data Exposure
 ❖ XML External Entities (XXE)
 ❖ Broken Access Control
 ❖ Security Misconfiguration
 ❖ Cross-Site Scripting (XSS)
 ❖ Insecure Deserialization
 ❖ Using Components with Known Vulnerabilities
 ❖ Insufficient Logging and Monitoring
• OWASP Juice Shop
• Web application firewall

UNIT-IV: MALWARE ANALYSIS periods: 12
• What is malware
• Types of malware
 ❖ Keyloggers
 ❖ Trojans
- Ransomware
- Rootkits

- Antivirus
- Firewalls
- Malware analysis
 - VM ware
 - How to use sandbox
 - How to create virtual machine
 - Process explorer
 - Process monitor
 - SYS-internals Suite

- SOC-security operations controls - Solar winds (study the tools)
- Network intrusion detection
 - Wireshark
 - IDS
 - IPS
 - Snort

UNIT-V: CYBER SECURITY: Legal Perspectives
periods: 10

- Cybercrime and the legal landscape around the world
- Indian IT ACT 2000 - Cybercrime and Punishments
- Weak areas of IT ACT 2000
- Challenges to Indian law and cybercrime scenario in India
- Amendments of the Indian IT Act

Textbooks:

Website References:

- https://owasp.org/www-project-top-ten/
- https://owasp.org/www-project-juice-shop/

Co-Curricular Activities:

(Co-curricular activities shall not promote copying from textbook or from others work and shall encourage self/independent and group learning)
A. Measurable

1. Assignments (in writing and doing forms on the aspects of syllabus content and outside the syllabus content. Shall be individual and challenging)

2. Student seminars (on topics of the syllabus and related aspects (individual activity))

3. Quiz (on topics where the content can be compiled by smaller aspects and data (Individuals or groups as teams))

4. Study projects (by very small groups of students on selected local real-time problems pertaining to syllabus or related areas. The individual participation and contribution of students shall be ensured (team activity)

B. General

1. Group Discussion

2. Try to solve MCQ’s available online.

RECOMMENDED CONTINUOUS ASSESSMENT METHODS:

Some of the following suggested assessment methodologies could be adopted;

1. The oral and written examinations (Scheduled and surprise tests),
2. Closed-book and open-book tests,
3. Practical assignments and laboratory reports,
4. Observation of practical skills,
5. Individual and group project reports.
6. Efficient delivery using seminar presentations,
7. Viva-Voce interviews.
8. Computerized adaptive testing, literature surveys and evaluations,
9. Peers and self-assessment, outputs form individual and collaborative work

CYBER SECURITY AND MALWARE ANALYSIS LAB

(Number of Hours per week: 2, Credits: 2)

COURSE OBJECTIVES:

The purpose of this course is to impart practical understanding on Cyber security and protection of electronic systems and information from malware attacks.

1. configure a LAN by using a switch
2. configure a LAN by using Router
3. steps to attack a victim computer by using "ProRat" trojan tool
4. Perform the packet sniffing mechanism by download the “wireshark” tool and extract the packets
5. Perform the task of creating mail messages by using fake mail id by using the "fake mailer" website (https://emkei.cz)
6. Perform the IP scanning mechanism by using “tracert”and “arp” commands
7. Perform the port scanning mechanism by using NMAP tool
8. Perform an SQL Injection attack and its preventive measure to avoid Injection attack
9. Perform an activity to access a locked computer without knowing the user's password.

Semester-wise Revised Syllabus under CBCS, 2020-21
Domain Subject: BACHELOR OF COMPUTER APPLICATIONS
Semester – V
Course- INTERNET OF THINGS
(Skill Enhancement Course- 5 credits)
Total Hrs: 60 ax Marks: 100

Course description and objectives:
Students will be explored to the interconnection and integration of the physical world and the cyber space. They are also able to design & develop communication system among heterogeneous components i.e. IOT Devices.

Course Outcomes:
* Able to understand various applications of IOT in real world and industry domain.
* Able to realize the revolution of Internet in Mobile Devices, Cloud & Sensor Networks.
* Able to understand building blocks of Internet of Things and characteristics.
* Able to design and develop IOT devices.

UNIT-1
1.1 IOT. Explain Characteristics and component of IOT.
1.2 Advantages and disadvantages of IOT.
1.3 various application areas of IoT.
1.4 Time for Convergence for IoT.
1.5 reasons to converge the technologies and shift to IOT.
1.6 smart parking IOT application using figure.
1.7 smart home IOT application using figure.
1.8 smart health using IoT.
1.9 Smart City application of IoT

UNIT-2
2.1 M2M Value Chains.
2.2 IoT architecture outline with diagram.
2.3 IOT Value Chains using figure.
2.4 shifting from M2M to IoT.
2.5 design principles and needed capabilities of IOT.
2.6 I-GVC using figure.
2.7 Global Value Chain
2.8 M2M Value Chains.
2.9 IoT-Architecture.

UNIT 3:
3.1 ETSI M2M high-level architecture.
3.2 IOT reference model.
3.3 IOT function view.
3.4 IOT reference architecture’s deployment and operational view.
3.5 reference architecture of IOT using figure.
3.6 Functional View, Information View, Deployment and Operational View, Other Relevant architectural views of IOT reference architecture.
3.7 Architecture Reference Model of IOT using figure.
3.8 IoT Domain Model
3.9 Open Geospatial Consortium Architecture with a diagram.

UNIT 4
4.1 shopping basket can tell: IoT for retailing industry?
4.2 future factory concepts.
4.3 four aspects in your business to master IoT.
4.4 Needs of IoT for Oil and Gas Industry.
4.5 creation from big data and serialization.
4.6 challenges faced by industry related IoT Applications.
4.7 four Aspects in one’s business to master IoT.
4.8 eHealth IOT applications.
4.9 security concerns for industry.
4.10 shopping basket can tell: IoT for retailing industry
4.11 future factory concepts.
4.12 IoT for Oil and Gas Industry
4.13 Smart factory.

UNIT 5
5.1 GAMBAS adaptive middleware.
5.2 smartie approach for IoT.
5.3 security, privacy and trust in IoT-Data-Platforms for smart cities
5.4 Data aggregation for the IoT in smart cities security.
5.5 contributions from FP7Projects.
5.6 smartie approach, properties and characteristics.
5.7 privacy-preserving sharing of IoTData.
5.8 activity chain - governance, privacy and security issues.
Co-Curricular Activities:

(These activities shall not promote copying from textbooks or other work and shall encourage self-independent and group learning)

A. Measurable
1. Assignments (in writing and doing forms on the aspects of syllabus content and outside the syllabus content. Shall be individual and challenging)
2. Student seminars (on topics of the syllabus and related aspects (individual activity))
3. Quiz (on topics where the content can be compiled by smaller aspects and data (Individuals or groups as teams))
4. Study projects (by very small groups of students on selected local real-time problems pertaining to syllabus or related areas. The individual participation and contribution of students shall be ensured (team activity)

B. General
1. Group Discussion
2. Try to solve MCQ’s available online.

RECOMMENDED CONTINUOUS ASSESSMENT METHODS:

Some of the following suggested assessment methodologies could be adopted;

1. The oral and written examinations (Scheduled and surprise tests),
2. Closed-book and open-book tests,
3. Practical assignments and laboratory reports,
4. Observation of practical skills,
5. Individual and group project reports.
6. Efficient delivery using seminar presentations,
7. Viva-Voce interviews.
8. Computerized adaptive testing, literature surveys and evaluations,
9. Peers and self-assessment, outputs form individual and collaborative work

IoT Lab Experiments:

1. Define and Explain Eclipse IoT Project
2. List and summarize few Eclipse IoT Projects.
3. Sketch the architecture of IoT Toolkit and explain each entity in brief.
4. Demonstrate a smart object API gateway service reference implementation in IoT toolkit.
5. Write and explain working of an HTTP-to-CoAP semantic mapping proxy in IoT toolkit.
6. Describe gateway-as-a-service deployment in IoT toolkit.
7. Explain application framework and embedded software agents for IoT toolkit.
8. Explain working of Raspberry Pi.
9. Connect Raspberry Pi with your existing system components.
Course objectives:

1. Interpret the features of Android operating systems
2. Configure Android Environment and Development tools
3. Develop user interfaces by using layouts an controls
4. Develop rich user interface in the given view
5. Understand the security services and able to publish android application

Learning Outcomes:
Upon successful completion of the course, a student will be able to:

CO 1. Identify basic terms, tools and software related to android systems
CO 2. Describe components of IDE, understand features of android development tools
CO 3. Describe the layouts and controls
CO 4. Explain the significance of displays using the given view
CO 5. Explain the features of services and able to publish android Application
CO 6. Developing interesting Android applications using MIT App Inventor

UNIT-1 10 Hrs

1.1 Introduction to Android, open headset alliance, Android Ecosystem
1.2 Need of Android
1.3 Features of Android
1.4 Tools and software required for developing an Application
1.5 Android architecture

UNIT-2 12 Hrs

2.1 operating system, java JDK, Android SDK
2.2 Android development tools
2.3 Android virtual devices
2.4 steps to install and configure Android studio and sdk

UNIT-3 14 Hrs

3.1 control flow, directory structure
3.2 components of a screen
3.3 fundamental UI design
3.4 linear layout, absolute layout, table layout, relative layout
3.5 text view
3.6 edit text
3.7 button, image button, radio button, toggle button
3.8 radio group, check box, and progress bar
3.9 list view, grid view, image view, scroll view
3.10 time and date picker

UNIT-4 12 Hrs

4.1 android platform services
4.2 Android system Architecture
4.3 Android Security model
4.4 Applications development: creating small application

UNIT-5 12 Hrs

5.1 Introduction of MIT App Inventor
5.2 Application Coding
5.3 Programming Basics & Dialog
5.4 More Programming Basics
5.5 Alarm Clock Application
5.6 Audio & Video
5.7 Drawing Application
5.8 File
5.9 Game
5.10 Device Location
5.11 Web Browsing

Text Books:

2. App Inventor : create your own Android apps by Wolber, David (David Wayne)

Reference Books:

4. Android Online Developers Guide
6. Apps- Fundamentals
7. https://www.udacity.com/course/developing-android-appsfundamentals--ud853-
 nd

RECOMMENDED CO-CURRICULAR ACTIVITIES:
(Co-curricular activities shall not promote copying from textbook or from others
work and shall encourage self/independent and group learning)

A. Measurable
 1. Assignments (in writing and doing forms on the aspects of syllabus content
 and outside the syllabus content. Shall be individual and challenging)
 2. Student seminars (on topics of the syllabus and related aspects (individual activity))
 3. Quiz (on topics where the content can be compiled by smaller aspects and
 data (Individuals or groups as teams))
 4. Study projects (by very small groups of students on selected local real-time
 problems pertaining to syllabus or related areas. The individual participation
 and contribution of students shall be ensured (team activity)

B. General
 1. Group Discussion
 2. Try to solve MCQ’s available online.
 3. Others

RECOMMENDED CONTINUOUS ASSESSMENT METHODS:
Some of the following suggested assessment methodologies could be adopted;
 1. The oral and written examinations (Scheduled and surprise tests),
 2. Closed-book and open-book tests,
 3. Problem-solving exercises,
 4. Practical assignments and laboratory reports.
 5. Observation of practical skills,
 6. Efficient delivery using seminar presentations,
 7. Viva voce interviews.
 8. Computerized adaptive testing, literature surveys and evaluations,
 9. Peers and self-assessment, outputs form individual and collaborative work
Mobile Application Development Lab
(Number of Hours Per week: 2, Credits: 2)

Course objectives:

1. know the components and structure of mobile application development framework for android
2. learn the basic and important design concepts
3. learn the development of mobile application

Outcomes:

1. Understand the android platform
2. Design and implementation of various mobile applications

Experiments:

1. Demonstrate mobile technologies and devices
2. Demonstrate Android platform and applications overview
3. Implement User interface design layouts
4. Working with texts, shapes, buttons and lists
5. Develop a calculator application
6. Implement an application that creates an alarm clock

Note: The list of experiments need not be restricted to the above list. Detailed list of programming/software tool based exercises can be prepared by the concerned faculty members.

Semester-wise Revised Syllabus under CBCS, 2020-21
Domain Subject: COMPUTER APPLICATIONS
Semester – V
Course-PC HARDWARE AND NETWORKING
(Skill Enhancement Course (Elective), 5 credits)
Total Hrs: 60 Max Marks: 100

Course objectives:
Upon successful completion of the course, a student will be able to:

Learning Outcomes:
CO 1. Identify the computer peripherals, software and hardware devices.
CO 2. Describe the basics of networks and networking tools
CO 3. Describe the Network Addressing and sub-netting
CO 4. Explains the Networks protocols and management
CO 5. Identifies Basic Network administrator roles

UNIT-1 Introduction to computer hardware

1. Introduction & Definition of Computer
 1.1.1 Block Diagram of computer
 1.1.2 Classification of computer
 1.1.3 Characteristics of Computers
 1.1.4 Types of Languages and language translators.
 1.1.5 History and Generation of computers, Memory - Bits, Bytes, KB, MB, GB, TB, PB, EB, ZB, YB, Brontope byte, Geeope Byte. Etc
 IEC Units: kibi, mebi, gibi, tebi, pebi, exbi, zebi, yobi
 1.1.6 Computer Software, Types of Software with Ex. (System/Application/Utility S/W
 1.1.7 Computer Hardware- Intro. to Hardware components of computer

1.2. Components and its parts
 1.2.1 Identifying the Important Hardware Components of PC.- CPU, Motherboard, RAM, HDD, ODD, SMPS, K/B, Mouse, Monitor (CRT, LCD, LED) etc

1.3. SMPS
 1.3.1 About SMPS
 1.3.2 Types of SMPS
 1.3.3 Power stored in UPS
 1.3.4 Components and Circuits inside the SMPS Unit

1.4 UPS (Uninterrupted Power Supply)
 1.4.1 Types of UPS (Offline/Line Interactive & Online)
 1.4.2 Working Principle of each type of UPS.
 1.4.3 Connecting, Maintenance and Troubleshooting.

UNIT-2 Computer management and servicing

2.1 Assembling and dissembling PCs
2.2 Introduction to BIOS / CMOS Setup, POST (Power On SelfTest)
 2.1.1 Introduction to BIOS/CMOS Setup, POST (Power On Self-Test
 2.1.2 Demonstration of BIOS/CMOS Configuration (Date, Time, Enable/Disable Devices).
 2.1.3 Dual BIOS Feature
 2.1.4 BIOS/CMOS Setup, Booting Sequence/Boot Order
2.3 Introduction to Operating System
 2.3.1 Definition and types of Operating Systems - MSDos, Windows 9x/XP/Vista/7/8, Linux, MAC OS, Android etc.
 2.3.2 Process of Booting the Operating System.
 2.3.3 Win XP/Win 7. Activation and Automatic Updating procedures.
2.4 Computer Management
 2.4.1 Computer Management, Disk Management, Defragmentation,
 2.4.2 Services and Applications,
 2.4.3 local Users and Groups
 2.4.4 Advanced System Settings
 2.4.5 Device Manager, Task Manager, Windows Registry
2.5 Partitioning
 2.5.1 Partitioning of Hard Drive - Primary, Extended, Logical partitions using Partition Tools.

UNIT-3 Overview of Networking

3.1 Overview of Networking
3.2 Classification of Networks–LAN, MAN, WAN
3.3 Hardware and Software Components, Wi-Fi, Bluetooth
3.5 Network Communication Standards.
3.6 NETWORKING MODEL - OSI Reference Model, TCP/IP Reference Model
3.7 LAN Cables, Connectors, wireless network adapter
3.8 Wireless network adapter
3.9 Functions of LAN Tools
 3.9.1 Anti-Magnetic mat
 3.9.2 Anti-Magnetic Gloves
 3.9.3 Crimping Tool
 3.9.4 Cable Tester
 3.9.5 Cutter
 3.9.6 Loop back plug
 3.9.7 Toner probe
 3.9.8 Punch down tool
 3.9.9 Protocol analyzer
 3.9.10 Multi meter
3.10 Network Topologies
 2.7.1 Bus
 2.7.2 Ring
 2.7.3 Star
 2.7.4 Mesh
 2.7.5 Hybrid Topologies
UNIT- 4 Network Addressing and sub-netting

4.1 Network Addressing.
4.2 TCP/IP Addressing Scheme
4.3 Components of IP Address and classes
4.4 Sub-netting
4.5 Internet Protocol Addressings - IPv4, IPv6
4.6 Classful addressing and classless addressing

UNIT-5 Networks protocols and management

5.1 protocols in computer networks
5.2. Hyper Text Transfer Protocol(HTTP)
 5.2.1 File Transfer Protocol(FTP)
5.2.2 Simple Mail Transfer Protocol(SMTP)
5.2.3 Address Resolution Protocol(ARP)
5.2.4 Reverse Address Resolution Protocol(RARP)
5.3. Telnet, ICMP
5.4. Simple Network Management Protocol(SNMP)
5.5. DHCP, DNS
5.6 Network Management.
5.7 Network Monitoring and Troubleshooting.
5.8 Remote Monitoring (RMON)

Text Book:

2. “Computer Networks”, Tanenbaum, PHI,
3. PC AND CLONES Hardware, Troubleshooting and Maintenance B. Govinda rajalu, Tata Mc-graw-Hill Publication

Reference Books:

1. PC Troubleshooting and Repair Stephen J. Bigelow Dream tech Press, New Delhi
2. “Data and Computer Communications”, Stallings, PHI,
4. IT essential V7 companion guide – Cisco Networking Academy 2020
5. Upgrading and repairing PCs(22nd edition) – Scott Mueller – 2015 Que

Lab experiments

Course objectives:
To train the officials to acquire basic knowledge in computer hardware and peripherals for installation, PC assembly, trouble shooting and maintenance including system management and its backup and to undertake disaster
prevention, a basic knowledge of TCP/IP networks work group, internet and intranet.

Outcomes:

The student will able to know the Basic of Computer assembling and trouble shooting. This course will provide the brief knowledge of Computer networking and trouble shooting

Experiments:

1. Introduction to PC Hardware and its peripherals
2. Hardware installation and configuration
3. PC Debugging, troubleshooting and basic preventive maintenance
4. Assembling and Disassembling of a Computer System
5. Preparation of Boot disk or USB drive (demo)
6. Software installation and Configuration with CD/DVD or USB drive
7. Installation of commonly used software (Office Suites, Virus Scanners & Utilities)
8. Printer Installation & Print Test Page (Demo)
9. Installation of Web cam and tools like zoom/Edx/Microsoft teams (optional) for online class
10. Identifying network components and devices (hub, Switch and router)
11. Cables – Coaxial and UTP and its connectors/Jacks and preparation of a patch cord
12. Networking Basic and Configuration
13. Run All Types of Network Troubleshooting Commands (ipconfig, ping, traceroute etc)
14. Installation and configuring the proxy server for internet access
15. Exercise on Setting of particular IP address (static) to an existing terminal system
16. Exercise on Installation of network operating system
17. Exercise on Configuration of DHCP and DNS.
18. Exercise on File/Folder accessing rights for sharing and printer sharing
19. Exercise on remote desktop
20. Exercise on setting up of VPN on network
21. Design a network with Cisco Packet tracer 8.0 (freely downloadable)
 a. Simple network with one server with five desktops (configure static IP addresses)
 b. Adding and removing network cards in a PC or server
 c. Design a Network with one DHCP server with 5 desktops
 (Try exercises 13, 16 and 17 using Cisco packet tracer)

Tools required for PC assembling and software installation
1. Multimeter - 1Rs 500/basic version
2. Digital voltage tester – 1 Rs 150 (taparia)
3. Earth checking plug – 1 Rs 350 (Mx)
4. Mother board diagnosis card -1 Rs 400/-
4. SMPS power supply tester - 1 Rs 400/-
5. Screw driver kit – 4 Nos Rs 40 each
6. External CD/DVD writer – 1 Rs 2000/-
6. Media for operating system (CD/DVD) or USB drive
 (Try with trial versions for windows) or Ubuntu desktop(Linux)
Note : Un used old desktops can be used for installation

Tools Required for Network

1. RJ45 crimp tool – 1 Rs 250/- basic model
2. Cable tester - 1 Rs 350/-
3. Rj45 jacks - 100 nos Rs 250(ordinary) - consumables
4. UTP cable - 10 mts for each class Rs 20 per metre - consumables